Comparison of Naïve Bayes and Support Vector Machine for Sentiment Classification of Acne Skincare Reviews
DOI:
https://doi.org/10.30871/jaic.v10i1.11869Keywords:
Acne, Classification, Naïve Bayes, Sentiment, Support Vector MachineAbstract
The increasing popularity of skincare products for acne-prone skin had led to a surge in online consumer reviews, which are characterized by informal language, domain-specific terminology, and imbalanced sentiment distribution, posing challenges for sentiment classification tasks. This study aims not only to compare the performance but also to analyze the generalization behavior of two popular machine learning algorithms, Naïve Bayes and Support Vector Machine (SVM), for sentiment classification of skincare product reviews specifically targeting acne-prone skin. A comprehensive methodology was employed, including thorough text preprocessing, feature extraction using Term Frequency-Inverse Document Frequency (TF-IDF) with n-gram representation, and data balancing through Synthetic Minority Over-sampling Technique (SMOTE). The study utilized a dataset of 4,004 labeled reviews categorized into positive and negative sentiments. The models were evaluated using stratified 5-Fold cross-validation to ensure robust and fair assessment. Results indicate that Naïve Bayes slightly outperforms SVM on the testing set, achieving the highest accuracy of 91.14% compared to 90.64% for SVM. While SVM demonstrated higher performance during training, its testing performance suggested a tendency toward overfitting, whereas Naïve Bayes exhibited more stable generalization on unseen data. Further qualitative insight analysis revealed that product effectiveness and user experience are the primary drivers of consumer sentiment, while competitive analysis highlighted distinct brand perception patterns across skincare categories. These findings indicate that simpler probabilistic models such as Naïve Bayes can provide robust and reliable performance for sentiment analysis in specialized and imbalanced skincare review datasets.
Downloads
References
[1] Dwi Tiyas Novitasari, M. A. Barata, and P. E. Yuwita, “Analisis Sentimen Pengguna Twitter Terhadap Skincare Dengan Metode Support Vector Machine (Svm),” INTI Nusa Mandiri, vol. 19, no. 2, pp. 325–332, 2025, doi: 10.33480/inti.v19i2.6297.
[2] F. Khoirunisa and S. Nurhayati, “Pengaruh Customers Online Review, Customers Online Rating, dan Harga Produk terhadap Keputusan Pembelian Melalui Marketplace Shopee,” INOBIS J. Inov. Bisnis dan Manaj. Indones., vol. 7, no. 4, pp. 456–469, 2024, doi: 10.31842/jurnalinobis.v7i4.336.
[3] Restuti Nunik and Kurnia Marlina, “Pengaruh Harga, Ulasan Produk, Kemudahan Transaksi, Kualitas Informasi dan Kepercayaan Terhadap Keputusan Pembelian Produk Kecantikan Secara Online Pada Marketplace Shopee,” Borobudur Manag. Rev., vol. 2, no. 1, pp. 24–40, 2022, doi: 10.31603/bmar.v2i2.6817.
[4] V. G. Shintarani, R. Mayasari, and ..., “Analisis Sentimen Ulasan Konsumen Pada Produk Ponsel Pintar Menggunakan Metode Naïve Bayes,” … Mandalika ISSN 2721 …, pp. 771–781, 2023, [Online]. Available: https://ojs.cahayamandalika.com/index.php/JCM/article/view/2101%0Ahttps://ojs.cahayamandalika.com/index.php/JCM/article/download/2101/1662
[5] B. Z. Ramadhan, R. I. Adam, and I. Maulana, “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 220–225, 2022, doi: 10.30871/jaic.v6i2.4725.
[6] C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” Aiti, vol. 18, no. 2, pp. 173–184, 2021, doi: 10.24246/aiti.v18i2.173-184.
[7] I. Kurniawan, A. Lia Hananto, S. Shofia Hilabi, A. Hananto, B. Priyatna, and A. Yuniar Rahman, “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: http://jurnal.mdp.ac.id
[8] R. F. Rahmadzani, R. W. Pratiwi, and A. N. Paradita, “Comparison of Naive Bayes and Support Vector Machine (SVM) Methods in Female Daily Skincare Sentiment Analysis,” Radiant, vol. 6, no. 2, pp. 99–108, 2025, doi: 10.52187/rdt.v6i2.316.
[9] I. Bazar, F. Wajidi, and A. A. Asnan Cirua, “Analisis Sentimen Ulasan Aplikasi Wondr By BNI Menggunakan Algoritma Svm Dengan Optimasi Kernel Trick,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 4, no. 2, pp. 69–81, 2025, doi: 10.55123/storage.v4i2.5178.
[10] U. I. Shabrina, M. I. Java, and S. Rochimah, “Optimizing Sentiment Analysis in Educational Youtube Videos: a Comparative Study of Roberta and Multinomial Naive Bayes,” JUTI J. Ilm. Teknol. Inf., pp. 83–90, 2024, doi: 10.12962/j24068535.v22i2.a1204.
[11] K. S. Putri, I. R. Setiawan, and A. Pambudi, “Analisis Sentimen Terhadap Brand Skincare Lokal Menggunakan Naïve Bayes Classifier,” Technol. J. Ilm., vol. 14, no. 3, p. 227, 2023, doi: 10.31602/tji.v14i3.11259.
[12] W. Clarisha, “Analisis Sentimen Sunscreen Lokal Skintific , Somethinc , dan Avoskin dengan Naive Bayes dan SVM Sentiment Analysis of Local Sunscreen Skintific , Somethinc , and Avoskin with Naive Bayes and SVM,” vol. 7, pp. 264–271, 2025.
[13] L. S. Lestari, T. Sutrisno, and I. Lewenusa, “Sentiment Analysis on Skincare Product Reviews Using Lexicon-Based and Comparison of SVM Kernel,” vol. 5, no. 11, pp. 5250–5259, 2024.
[14] S. C. Jenkins, R. F. Lachlan, and M. Osman, “An integrative framework for mapping the psychological landscape of risk perception,” Sci. Rep., pp. 1–17, 2024, doi: 10.1038/s41598-024-59189-y.
[15] Jasmarizal, Junadhi, Rahmaddeni, and M. Khairul Anam, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Terhadap Produk Skincare,” Indones. J. Comput. Sci., vol. 13, no. 1, pp. 1438–1450, 2024, doi: 10.33022/ijcs.v13i1.3654.
[16] H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (Svm),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4095.
[17] R. Durgam, N. B. Pamula, N. Dharani, B. V. N. S. Kumar, P. Durga, and V. Balaji, “AI-Powered Empathy: Sentiment Analysis In Personal Care Using RoBERTa And XLNet,” J. Theor. Appl. Inf. Technol., vol. 103, no. 8, pp. 3455–3470, 2025.
[18] S. K. Wardani and Y. A. Sari, “Analisis Sentimen menggunakan Metode Naïve Bayes Classifier terhadap Review Produk Perawatan Kulit Wajah menggunakan Seleksi Fitur N-gram dan Document Frequency Thresholding,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 12, pp. 5582–5590, 2021.
[19] R. Nurhidayat and K. E. Dewi, “Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 91–100, 2023, doi: 10.34010/komputa.v12i1.9458.
[20] N. Babanejad, H. Davoudi, A. Agrawal, A. An, and M. Papagelis, “The Role of Preprocessing for Word Representation Learning in Affective Tasks,” IEEE Trans. Affect. Comput., vol. 15, no. 1, pp. 254–272, 2024, doi: 10.1109/TAFFC.2023.3270115.
[21] S. K. Narayanasamy, Y. C. Hu, S. M. Qaisar, and K. Srinivasan, “Effective Preprocessing and Normalization Techniques for COVID-19 Twitter Streams with POS Tagging via Lightweight Hidden Markov Model,” J. Sensors, vol. 2022, 2022, doi: 10.1155/2022/1222692.
[22] S. Sarica and J. Luo, “Stopwords in technical language processing,” PLoS One, vol. 16, no. 8 August, pp. 1–13, 2021, doi: 10.1371/journal.pone.0254937.
[23] M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing for Student Complaint Document Classification Using Sastrawi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 874, no. 1, 2020, doi: 10.1088/1757-899X/874/1/012017.
[24] R. L. Musyarofah, E. U. Utami, and S. R. Raharjo, “Analisis Komentar Potensial pada Social Commerce Instagram Menggunakan TF-IDF,” J. Eksplora Inform., vol. 9, no. 2, pp. 130–139, 2020, doi: 10.30864/eksplora.v9i2.360.
[25] Y. Sulistiyo Wibowo et al., “Journal of Data Science and Software Engineering Performance Analysis Of Classifier Of Facebook Data Using Unigram & Bigram Combinations (Yudha ) | 63,” vol. 01, no. 2, pp. 63–72, 2020.
[26] M. F. Ramadhan, “Klasifikasi Topik dan Sentimen Judul Berita dengan Augmentasi dan,” vol. 4, no. 2, pp. 6732–6741, 2025.
[27] Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
[28] I. Technology, K. Utama, J. G. Kelang, W. Persekutuan, and K. Lumpur, “A Comparative Study Of Machine Learning Algorithms For Sentiment Analysis,” vol. 2021, no. Icdxa 2021, pp. 63–68, 2022.
[29] R. A. Fauzan and M. Mufti, “Analisis Sentimen Komentar Youtube Program Kampus Merdeka Berbasis Web Menggunakan Algoritma Multinomial Naïve Bayes,” Semin. Nas. Mhs. Fak. Teknol. Inf., vol. 2, no. 2, pp. 864–871, 2023, [Online]. Available: https://senafti.budiluhur.ac.id/index.php/senafti/article/view/929/563
[30] A. R. Makhtum and M. Muhajir, “Sentiment Analysis of Omnibus Law Using Support Vector Machine (Svm) With Linear Kernel,” Barekeng, vol. 17, no. 4, pp. 2197–2206, 2023, doi: 10.30598/barekengvol17iss4pp2197-2206.
[31] J. R. Almonteros and J. B. Matias, “Integration of Stratified KFold Cross Validation to Enhance Prediction Accuracy: A Comparison Study,” 2024 5th Int. Conf. Data Anal. Bus. Ind. ICDABI 2024, no. October 2024, pp. 81–85, 2024, doi: 10.1109/ICDABI63787.2024.10800425.
[32] D. Soyusiawaty and F. G. Putra, “Pengembangan Chatbot Untuk Layanan Pimpinan Daerah Muhammadiyah Kota Yogyakarta Menggunakan Metode Rule-based,” J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 4, no. 2, pp. 354–363, 2023.
[33] D. Pakpahan, V. Siallagan, and S. Siregar, “Classification of E-Commerce Product Descriptions with The Tf-Idf and Svm Methods,” Sinkron, vol. 8, no. 4, pp. 2130–2137, 2023, doi: 10.33395/sinkron.v8i4.12779.
[34] S. Wang, Y. Dai, J. Shen, and J. Xuan, “Research on expansion and classification of imbalanced data based on SMOTE algorithm,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/s41598-021-03430-5.
[35] N. Z. B. Jannah and K. Kusnawi, “Comparison of Naïve Bayes and SVM in Sentiment Analysis of Product Reviews on Marketplaces,” Sinkron, vol. 8, no. 2, pp. 727–733, 2024, doi: 10.33395/sinkron.v8i2.13559.
[36] U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 36, pp. 222–231, 2022, [Online]. Available: https://jurnal.yudharta.ac.id/v2/index.php/EXPLORE-IT/article/view/3116
[37] Ketut Mediana Ayu Candrayani, I Made Agus Dwi Suarjaya, and Anak Agung Ketut Agung Cahyawan Wiranatha, “Analisis Sentimen Pembelajaran Daring Era Pandemi COVID-19 Menggunakan Naive Bayes Dan SVM,” Tematik, vol. 10, no. 1, pp. 47–53, 2023, doi: 10.38204/tematik.v10i1.1274.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Alti Arindika, Majid Rahardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








