Detection of Ripeness in Oil Palm Fresh Fruit Bunches Using the YOLO12S Algorithm on Digital Images

Authors

  • Linnda Prawidya Nur'aini Universitas AMIKOM Yogyakarta
  • Majid Rahardi Universitas AMIKOM Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i4.10250

Keywords:

Deep Learning, FFB Ripeness, Object Detection, Oil Palm, YOLO12s

Abstract

Indonesia is the world's largest producer of palm oil, with a production volume reaching 46.82 million tons in 2022. This industry heavily relies on the quality of Fresh Fruit Bunches (FFB) harvests, which is determined by the accuracy of ripeness at the time of harvest. Unfortunately, ripeness assessment of FFB is still conducted manually and subjectively by field workers, posing risks to both efficiency and production accuracy. Although various studies have employed YOLOv5 and YOLOv8 for fruit ripeness detection, few have explored the potential of YOLO12s in classifying FFB ripeness in a comprehensive and efficient manner. In this study, we present the application of the YOLO12s algorithm to automatically classify the ripeness levels of oil palm FFB using digital images. The YOLO12s model was trained on 14,620 FFB images categorized into four ripeness levels: unripe, under-ripe, ripe, and overripe. Evaluation results showed a precision of 93.1%, recall of 95.9%, [email protected] of 97.8%, and [email protected]–0.95 of 78.8%. The model was able to perform inference in approximately 4.7 milliseconds per image and demonstrated good generalization despite challenges related to varying lighting conditions. These results indicate that YOLO12s holds great potential to replace subjective manual methods with a more accurate, consistent, and efficient classification solution to support the harvesting process in the palm oil industry.

Downloads

Download data is not yet available.

References

[1] Outlook Kelapa Sawit. Jakarta: Pusat Data dan Sistem Informasi Pertanian, 2024.

[2] B. P. Statistik, “Produksi Tanaman Perkebunan (Ribu Ton), 2023,” 2 May 2024. Accessed: Jun. 21, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTMyIzI=/produksi-tanaman-perkebunan.html

[3] E. F. Himmah, M. Widyaningsih, and M. Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering,” J. Sains dan Inform., vol. 6, no. 2, pp. 193–202, 2020, doi: 10.34128/jsi.v6i2.242.

[4] J. Zulkarnain, Kusrini, and T. Hidayat, “Klasifikasi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Pendekatan Deep Learning,” JST (Jurnal Sains dan Teknol., vol. 12, no. 3, pp. 748–758, 2024, doi: 10.23887/jstundiksha.v12i3.59140.

[5] M. Y. M. A. Mansour, K. D. Dambul, and K. Y. Choo, “Object Detection Algorithms for Ripeness Classification of Oil Palm Fresh Fruit Bunch,” Int. J. Technol., vol. 13, no. 6, pp. 1326–1335, 2022, doi: 10.14716/ijtech.v13i6.5932.

[6] R. Kurniawan, A. T. Martadinata, and S. D. Cahyo, “Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 302–309, 2023, doi: 10.47065/josh.v5i1.4408.

[7] A. Ritonga, A. A. Munawar, and I. S. Nasution, “Klasifikasi Kematangan Tandan Buah Segar Kelapa Sawit (Elaeis gueneensis Jacq)menggunakan Pengolahan Citra Digital,” J. Ilm. Mhs. Pertan., vol. 8, no. 3, pp. 437–445, 2023.

[8] N. J. Hayati, D. Singasatia, and M. R. Muttaqin, “Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)v8 untuk Menghitung Kendaraan,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 2, pp. 91–99, 2023, doi: 10.34010/komputa.v12i2.10654.

[9] T. M. Banhazi and M. Tscharke, “A brief review of the application of machine vision in livestock behaviour analysis,” J. Agric. Informatics, vol. 7, no. 1, pp. 23–42, 2016, doi: 10.17700/jai.2016.7.1.279.

[10] F. Gusnanto, N. Rahaningsih, R. D. Dana, T. Informatika, and K. Cirebon, “Optimasi Model Klasifikasi Tingkat Kematangan Buah Mangga Dengan Metode Yolo11,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 1, pp. 1773–1780, 2025, doi: doi.org/10.36040/jati.v9i1.12591.

[11] S. Aras, P. Tanra, and M. Bazhar, “Deteksi Tingkat Kematangan Buah Tomat Menggunakan YOLOv5,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 623–628, 2024, doi: 10.57152/malcom.v4i2.1270.

[12] A. Wibowo, L. Lusiana, and T. K. Dewi, “Implementasi Algoritma Deep Learning You Only Look Once (YOLOv5) Untuk Deteksi Buah Segar Dan Busuk,” Paspalum J. Ilm. Pertan., vol. 11, no. 1, p. 123, 2023, doi: 10.35138/paspalum.v11i1.489.

[13] Z. Genoveva and R. D. Syah, “Model Machine Learning Untuk Deteksi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan MetodE,” J. Pertan. Presisi (Journal Precis. Agric., vol. 8, pp. 121–136, 2024, doi: http://dx.doi.org/10.35760/jpp.2024.v8i2.11848.

[14] D. S. Prasvita, M. M. Santoni, and N. Falih, “Deteksi Pohon Kelapa Sawit dengan Pendekatan Deep Learning pada Citra Multispectral di Indonesia,” Indones. J. Comput. Sci., vol. 13, no. 2, pp. 3111–3125, 2024, doi: 10.33022/ijcs.v13i2.3753.

[15] M. Gelar, S. Komputer, and U. M. Sorong, “Implementasi deep learning untuk deteksi umur berdasarkan citra wajah suku moi menggunakan metode yolo,” 2024.

Downloads

Published

2025-08-07

How to Cite

[1]
L. P. Nur'aini and M. Rahardi, “Detection of Ripeness in Oil Palm Fresh Fruit Bunches Using the YOLO12S Algorithm on Digital Images”, JAIC, vol. 9, no. 4, pp. 1633–1638, Aug. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.