Sentiment Analysis of the Film "JUMBO" on Twitter Using the Naive Bayes Method and Support Vector Machine (SVM) with a Text Mining Approach

Authors

  • Tegar Robi Widodo Universitas Amikom Yogyakarta
  • Ika Nur Fajri Universitas Amikom Yogyakarta
  • Bety Wulan Sari Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i5.10557

Keywords:

Sentiment Analysis, JUMBO Film, Naïve Bayes, Support Vector Machine (SVM), Random Clasifier, Twitter (X), Text Mining

Abstract

This study aims to perform sentiment analysis on reviews of the film “JUMBO” collected from the Twitter platform, using the Naive Bayes and Support Vector Machine (SVM) methods. The data were gathered through a crawling process on Twitter, yielding 2,011 tweets, which were then processed through several pre-processing steps, including case folding, cleaning, normalization, tokenization, stopword removal, and stemming. Subsequently, the data were transformed into numerical representations using TF-IDF, followed by sentiment labeling into positive, negative, and neutral categories. For the Naive Bayes method, training and evaluation were conducted using 5-fold Cross Validation. The results showed that the Naive Bayes model achieved an accuracy of 80.60%, precision of 73.83%, recall of 73.50%, and an F1-score of 69.98%. Meanwhile, the SVM method obtained an accuracy of 75.87%, precision of 76.36%, recall of 62.45%, and an F1-score of 65.64%. Compared to the baseline random classifier, which only achieved an accuracy of 32.47%, both primary methods significantly outperformed it in classifying film review sentiments. The analysis also indicates that the F1-score is lower than the accuracy due to the imbalanced data distribution, with a considerably higher number of positive reviews. This study also presents visualizations of sentiment distribution and word clouds to provide a clearer understanding of audience opinions. The results demonstrate that the Naive Bayes method performs well and has potential for use in sentiment analysis of films on social media platforms. These findings are expected to provide valuable insights for the creative industry, particularly in evaluating audience responses and improving the quality of future film productions.

Downloads

Download data is not yet available.

References

[1] Radendha Muhammad Arthansa, Dhea Intan Sagita, and Anggraini Puspita Sari, “Komparasi Analisis Sentimen Ulasan Film Avengers:Endgame Di Imdb Menggunakan Metode Naïve Bayes DanSvm,” STORAGE – J. Ilm. Tek. dan Ilmu Komput., vol. 3, no. 4, pp. 156–166, 2024.

[2] A. Fahmi Sabani, Adiwijaya, and W. Astuti, “Analisis Sentimen Review Film pada Website Rotten Tomatoes Menggunakan Metode SVM Dengan Mengimplementasikan Fitur Extraction Word2Vec,” e-Proceeding Eng., vol. 9, no. 3, p. 1800, 2022.

[3] J. E. Br Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” J. Manaj. Inform., vol. 14, no. 1, pp. 42–53, 2024, doi: 10.34010/jamika.v14i1.11946.

[4] S. Fatimah, “Sinopsis Film Jumbo, Animasi Indonesia tentang Petualangan Fantasi Anak.” [Online]. Available: https://www.detik.com/sulsel/berita/d-7862963/sinopsis-film-jumbo-animasi-indonesia-tentang-petualangan-fantasi-anak

[5] A. Cahya Kamilla, N. Priyani, R. Priskila, and V. Handrianus Pranatawijaya, “Analisis Sentimen Film Agak Laen Dengan Kecerdasan Buatan: Text Mining Metode Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2923–2928, 2024, doi: 10.36040/jati.v8i3.9587.

[6] R. Mubarok, “Analisis Sentimen Pengguna Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Sosial Berskala Besar (Psbb) Dengan Metode …,” J. Siliwangi Seri Sains dan Teknol., vol. 7, no. 1, pp. 19–24, 2021, [Online]. Available: http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/3726

[7] A. Hermawan, I. Jowensen, J. Junaedi, and Edy, “Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine,” JST (Jurnal Sains dan Teknol., vol. 12, no. 1, pp. 129–137, 2023, doi: 10.23887/jstundiksha.v12i1.52358.

[8] Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.

[9] F. Fathonah and A. Herliana, “Penerapan Text Mining Analisis Sentimen Mengenai Vaksin Covid - 19 Menggunakan Metode Naïve Bayes,” J. Sains dan Inform., vol. 7, no. 2, pp. 155–164, 2021, doi: 10.34128/jsi.v7i2.331.

[10] T. Ramadha Triputra and A. Rubhasy, “Analisis Sentimen Ulasan Pengguna Aplikasi Facebook Di Google Play Store Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 4607–4615, 2025, doi: 10.36040/jati.v9i3.13403.

[11] S. B. Putri, Y. N. Anisa, and N. Saputra, “Analisis Sentimen Film Kuliah Kerja Nyata (Kkn) Di Desa Penari Menggunakan Metode Naive Bayes,” JuSiTik J. Sist. dan Teknol. Inf. Komun., vol. 5, no. 2, pp. 22–26, 2022, doi: 10.32524/jusitik.v5i2.704.

[12] Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 4, pp. 411–423, 2022, doi: 10.55123/insologi.v1i4.770.

[13] R. Azhar, A. Surahman, and C. Juliane, “Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 267–281, 2022.

[14] A. A. Permana et al., Machine Learning, vol. 45, no. 13. 2023. [Online]. Available: https://books.google.ca/books?id=EoYBngEACAAJ&dq=mitchell+machine+learning+1997&hl=en&sa=X&ved=0ahUKEwiomdqfj8TkAhWGslkKHRCbAtoQ6AEIKjAA

[15] K. Anwar, “Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 148–155, 2022, doi: 10.30865/klik.v2i4.315.

[16] U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 36, pp. 222–231, 2022, [Online]. Available: https://jurnal.yudharta.ac.id/v2/index.php/EXPLORE-IT/article/view/3116

[17] A. A. Munandar, F. Farikhin, and C. E. Widodo, “Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 2, p. 77, 2023, doi: 10.31328/jointecs.v8i2.4747.

Downloads

Published

2025-10-19

How to Cite

[1]
T. R. Widodo, I. N. Fajri, and B. W. Sari, “Sentiment Analysis of the Film ‘JUMBO’ on Twitter Using the Naive Bayes Method and Support Vector Machine (SVM) with a Text Mining Approach”, JAIC, vol. 9, no. 5, pp. 2861–2868, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.