L2IC and MobileViT-XXS for BISINDO Alphabet Recognition

Authors

  • Chanan Artamma Universitas Amikom Yogyakarta
  • Majid Rahardi Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i6.11575

Keywords:

Indonesian Sign Language (BISINDO), Landmark-to-Image Conversion (L2IC), Deep Learning

Abstract

This study proposes a Landmark-to-Image Conversion (L2IC) approach integrated with the MobileViT-XXS architecture for Indonesian Sign Language (BISINDO) alphabet recognition. The method converts 42 hand keypoints, extracted using MediaPipe Hands into normalized 224×224 grayscale images to capture spatial hand patterns more effectively. These L2IC representations are then used as input to the MobileViT-XXS model, trained for 30 epochs with a learning rate of 0.001. Experimental results show that the model achieves an accuracy and Macro F1-Score of 97.98%, outperforming baseline approaches using raw RGB images and MLP-based classification on numerical keypoints. While the model demonstrates strong performance in controlled offline experiments, further evaluation is required to assess its robustness under real-world dynamic BISINDO usage and deployment on resource-limited devices. These findings indicate that the L2IC representation effectively captures essential spatial information, contributing to high recognition accuracy in static BISINDO hand gesture classification.

Downloads

Download data is not yet available.

References

[1] “Potret Penyandang Disabilitas di Indonesia: Hasil Long Form SP2020 - Badan Pusat Statistik Indonesia.” Accessed: Oct. 15, 2025.[Online].Available: https://www.bps.go.id/id/publication/2024/12/20/43880dc0f8be5ab92199f8b9/potret-penyandang-disabilitas-di-indonesia--hasil-long-form-sp2020.html

[2] “World report on hearing.” Accessed: Oct. 15, 2025. [Online]. Available: https://www.who.int/publications/i/item/9789240020481

[3] F. Tsina, A. Kusmawati, J. K. Ahmad Dahlan, K. Ciputat Timur, and K. Tangerang Selatan, “Dukungan Sosial Terhadap Kualitas Hidup Kelompok Tuli Di Majelis Ta’lim Tuli Indonesia,” Huk. Inov. J. Ilmu Huk. Sos. dan Hum., vol. 1, no. 2, pp. 71–80, Mar. 2024, doi: 10.62383/HUMIF.V1I2.94.

[4] D. A. Saraswati, V. D. Towidjojo, and Hasanuddin, “Bahasa Isyarat Indonesia,” J. Med. Prof., vol. 4, no. 1, pp. 8–14, 2022, Accessed: Oct. 15, 2025. [Online]. Available: https://jurnal.fk.untad.ac.id/index.php/medpro/article/view/582

[5] E. L. Kelana, M. R. A. Prasetya, . M., and M. Zulfadhilah, “Integrating the CNN Model with the Web for Indonesian Sign Language (BISINDO) Recognition,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 883–896, Jun. 2025, doi: 10.30871/JAIC.V9I3.9345.

[6] M. Z. Uddin, C. Boletsis, and P. Rudshavn, “Real-Time Norwegian Sign Language Recognition Using MediaPipe and LSTM,” Multimodal Technol. Interact. 2025, Vol. 9, Page 23, vol. 9, no. 3, p. 23, Mar. 2025, doi: 10.3390/MTI9030023.

[7] B. Alsharif, E. Alalwany, and M. Ilyas, “Transfer learning with YOLOV8 for real-time recognition system of American Sign Language Alphabet,” Franklin Open, vol. 8, p. 100165, Sep. 2024, doi: 10.1016/J.FRAOPE.2024.100165.

[8] G. Hugar, R. M. Kagalkar, and A. Das, “Comparative Study of Hybrid Deep Learning Models for Kannada Sign Language Recognition,” Int. J. Comput. Intell. Syst., vol. 18, no. 1, pp. 1–23, Dec. 2025, doi: 10.1007/S44196-025-00922-4/TABLES/7.

[9] B. Alsharif, E. Alalwany, A. Ibrahim, I. Mahgoub, and M. Ilyas, “Real-Time American Sign Language Interpretation Using Deep Learning and Keypoint Tracking,” Sensors 2025, Vol. 25, Page 2138, vol. 25, no. 7, p. 2138, Mar. 2025, doi: 10.3390/S25072138.

[10] S. Suherman, A. Suhendra, and E. Ernastuti, “Method Development Through Landmark Point Extraction for Gesture Classification With Computer Vision and MediaPipe,” TEM J., vol. 12, no. 3, pp. 1677–1686, Aug. 2023, doi: 10.18421/TEM123-49.

[11] S. Kamble, “SLRNet: A Real-Time LSTM-Based Sign Language Recognition System,” Jun. 2025, Accessed: Oct. 15, 2025. [Online]. Available: https://arxiv.org/pdf/2506.11154

[12] D. Amalfitano, V. D. ’ Angelo, A. M. Rinaldi, C. Russo, and C. Tommasino, “Enhancing Gesture Recognition for Sign Language Interpretation in Challenging Environment Conditions: A Deep Learning Approach.,” pdfs.semanticscholar.orgD Amalfitano, V D’Angelo, AM Rinaldi, C Russo, C TommasinoKDIR, 2023•pdfs.semanticscholar.org, 2023, doi: 10.5220/0012209700003598.

[13] J. Qin, M. W.-S. Reports, and undefined 2025, “Sign language recognition based on dual-channel star-attention convolutional neural network,” nature.comJ Qin, M WangScientific Reports, 2025•nature.com, Accessed: Oct. 15, 2025. [Online]. Available: https://www.nature.com/articles/s41598-025-13625-9

[14] S. Mehta and M. Rastegari, “Mobilevit: Light-Weight, General-Purpose, and Mobile-Friendly Vision Transformer,” ICLR 2022 - 10th Int. Conf. Learn. Represent., vol. 3, 2022.

[15] K. Meng and K. Chen, “Navigating Efficiency in MobileViT through Gaussian Process on Global Architecture Factors,” Jun. 2024, Accessed: Oct. 15, 2025. [Online]. Available: https://arxiv.org/pdf/2406.04820

[16] F. De et al., “Reducing Computational Cost in MobileViT for Edge-Oriented Models Through Token Merging,” Electron. 2024, Vol. 13, Page 5009, vol. 13, no. 24, p. 5009, Dec. 2024, doi: 10.3390/ELECTRONICS13245009.

[17] M. Zhang et al., “Dual-Attention-Enhanced MobileViT Network: A Lightweight Model for Rice Disease Identification in Field-Captured Images,” Agric., vol. 15, no. 6, pp. 1–22, 2025, doi: 10.3390/agriculture15060571.

[18] “Bisindo - Video Dataset.” Accessed: Oct. 15, 2025. [Online]. Available: https://www.kaggle.com/datasets/rizkyyangpalsu/bisindo-video-dataset

[19] “Learning OpenCV: Computer Vision with the OpenCV Library - Gary Bradski, Adrian Kaehler - Google Books.” Accessed: Oct. 15, 2025.

[20] F. Zhang et al., “MediaPipe Hands: On-device Real-time Hand Tracking,” 2020, [Online]. Available: http://arxiv.org/abs/2006.10214

Downloads

Published

2025-12-07

How to Cite

[1]
C. Artamma and M. Rahardi, “L2IC and MobileViT-XXS for BISINDO Alphabet Recognition”, JAIC, vol. 9, no. 6, pp. 3410–3418, Dec. 2025.

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.