Comparative Study of SVM, KNN, and Naïve Bayes for Sentiment Analysis of Religious Application Reviews
DOI:
https://doi.org/10.30871/jaic.v9i3.9482Keywords:
Sentiment Analysis, Support Vector Machine (SVM), NU Online, User Reviews, Classification AlgorithmsAbstract
This study aims to evaluate and compare the performance of three machine learning algorithms—Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Naïve Bayes—for sentiment classification of user reviews on the NU Online application in the Google Play Store. NU Online is a religious digital platform providing Islamic content such as articles, prayers, and worship schedules. A total of 1,500 user reviews were collected using web scraping, and 1,491 were retained after data cleaning. Preprocessing steps included punctuation removal, case folding, normalization, stopword removal, stemming, and tokenization. Sentiment labels (positive or negative) were automatically assigned using a lexicon-based approach. The performance of the models was assessed using accuracy, precision, recall, and F1-score, calculated via confusion matrix with a training-testing data split. The results show that the SVM with a linear kernel achieved the best accuracy (81.6%), followed by Naïve Bayes (73.2%) and K-NN (66.9%). These findings indicate that SVM is the most effective algorithm in this context, providing practical contributions for developers of the NU Online digital religious platform and contributing to research in Indonesian natural language processing.
Downloads
References
[1] H. Fajrussalam, I. Dwiyanti, N. F. Salsabila, R. Aprillionita, and S. Auliakhasanah, “Pemanfaatan Media Sosial sebagai Media Dakwah Islam dalam Kemajuan Perkembangan Teknologi,” AS-SABIQUN, vol. 4, no. 1, pp. 102–114, Mar. 2022, doi: 10.36088/assabiqun.v4i1.1686.
[2] B. Liu, “Sentiment Analysis and Opinion Mining,” Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, May 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.
[3] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
[4] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, Aug. 1992, doi: 10.1080/00031305.1992.10475879.
[5] N. Azizah, R. Goejantoro, and Sifriyani, “Metode Naive Bayes Dengan PendekatanDistribusi Gauss Untuk Klasifikasi PeminatanPeserta Didik,” Pros. Semin. Nas. Mat. dan Stat., vol. 1, pp. 1–7, 2019, [Online]. Available: https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/520/217
[6] J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588.
[7] M. R. Elfansyah, Rudiman, and F. Yulianto, “Perbandingan Metode K–Nearest Neighbor (Knn) Dan Naive Bayes Terhadap Analisis Sentimen Pada Pengguna E-Wallet Aplikasi Dana Menggunakan Fitur Ekstraksi Tf-Idf,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 8, no. 2, pp. 139–159, 2024.
[8] H. S. Utama, D. Rosiyadi, B. S. Prakoso, and D. Ariadarma, “Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 243–250, Aug. 2019, doi: 10.29207/resti.v3i2.1050.
[9] L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, Aug. 2020, doi: 10.33096/ilkom.v12i2.597.154-161.
[10] Y. Zhao, M. Mamat, A. Aysa, and K. Ubul, “Multimodal sentiment system and method based on CRNN-SVM,” Neural Comput. Appl., vol. 35, no. 35, pp. 24713–24725, Dec. 2023, doi: 10.1007/s00521-023-08366-7.
[11] M. Rahardi, A. Aminuddin, F. F. Abdulloh, and R. A. Nugroho, “Sentiment Analysis of Covid-19 Vaccination using Support Vector Machine in Indonesia,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 6, 2022, doi: 10.14569/IJACSA.2022.0130665.
[12] A. E. Karyawati, P. A. Utomo, and I. G. A. Wibawa, “Comparison of SVM and LIWC for Sentiment Analysis of SARA,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 1, p. 45, Jan. 2022, doi: 10.22146/ijccs.69617.
[13] C. P. D. Cyril, J. R. Beulah, N. Subramani, P. Mohan, A. Harshavardhan, and D. Sivabalaselvamani, “An automated learning model for sentiment analysis and data classification of Twitter data using balanced CA-SVM,” Concurr. Eng., vol. 29, no. 4, pp. 386–395, Dec. 2021, doi: 10.1177/1063293X211031485.
[14] R. A. A. Renal, Syariful Alam, and Moch Hafid T, “Komparasi Payment Digital Untuk Analisis Sentimen Berdasarkan Ulasan Di Google Playstore Menggunakan Metode Support Vector Machine,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 118–128, Aug. 2023, doi: 10.55123/storage.v2i3.2337.
[15] M. Apriliyani, M. I. Musyaffaq, S. Nur’Aini, M. R. Handayani, and K. Umam, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes,” AITI, vol. 21, no. 2, pp. 298–311, Sep. 2024, doi: 10.24246/aiti.v21i2.298-311.
[16] S. S.K.Rastogi, R. Singhal, and A. Kumar, “An Improved Sentiment Classification using Lexicon into SVM,” Int. J. Comput. Appl., vol. 95, no. 1, pp. 37–42, Jun. 2014, doi: 10.5120/16562-6226.
[17] P. D. Silitonga and R. Damanik, “Perbandingan Algoritma k-Nearest Neighbors (k-NN) dan Support Vector Machines (SVM) untuk Klasifikasi Pengenalan Citra Wajah,” J. ICT Inf. Commun. Technol., vol. 20, no. 1, pp. 186–191, Jul. 2021, doi: 10.36054/jict-ikmi.v20i1.354.
[18] R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 427–434, Oct. 2018, doi: 10.25126/jtiik.201854773.
[19] A. Desiani et al., “Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris,” Indones. J. Appl. Informatics, vol. 7, no. 1, p. 12, Apr. 2023, doi: 10.20961/ijai.v7i1.61486.
[20] L. A. Susanto, “Komparasi Model Support Vector Machine Dan K-Nearest Neighbor Pada Analisis Sentimen Aplikasi Polri Super App,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4152.
[21] E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, pp. 71–80, Jul. 2020, doi: 10.26623/transformatika.v18i1.2317.
[22] A. M. Ndapamuri, D. Manongga, and A. Iriani, “Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine, K-Nearest Neighbor, Dan Naive Bayes,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 1, p. 127, Jun. 2023, doi: 10.35314/isi.v8i1.3260.
[23] M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J., vol. 10, no. 02, pp. 71–76, Dec. 2020, doi: 10.32664/smatika.v10i02.455.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Heti Aprilianti, Khothibul Umam, Maya Rini Handayani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).