Comparative Study of SVM, KNN, and Naïve Bayes for Sentiment Analysis of Religious Application Reviews

Authors

  • Heti Aprilianti Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang
  • Khothibul Umam Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang
  • Maya Rini Handayani Teknologi Informasi, Fakultas Sains dan Teknologi, UIN Walisongo Semarang

DOI:

https://doi.org/10.30871/jaic.v9i3.9482

Keywords:

Sentiment Analysis, Support Vector Machine (SVM), NU Online, User Reviews, Classification Algorithms

Abstract

This study aims to evaluate and compare the performance of three machine learning algorithms—Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Naïve Bayes—for sentiment classification of user reviews on the NU Online application in the Google Play Store. NU Online is a religious digital platform providing Islamic content such as articles, prayers, and worship schedules. A total of 1,500 user reviews were collected using web scraping, and 1,491 were retained after data cleaning. Preprocessing steps included punctuation removal, case folding, normalization, stopword removal, stemming, and tokenization. Sentiment labels (positive or negative) were automatically assigned using a lexicon-based approach. The performance of the models was assessed using accuracy, precision, recall, and F1-score, calculated via confusion matrix with a training-testing data split. The results show that the SVM with a linear kernel achieved the best accuracy (81.6%), followed by Naïve Bayes (73.2%) and K-NN (66.9%). These findings indicate that SVM is the most effective algorithm in this context, providing practical contributions for developers of the NU Online digital religious platform and contributing to research in Indonesian natural language processing.

Downloads

Download data is not yet available.

References

[1] H. Fajrussalam, I. Dwiyanti, N. F. Salsabila, R. Aprillionita, and S. Auliakhasanah, “Pemanfaatan Media Sosial sebagai Media Dakwah Islam dalam Kemajuan Perkembangan Teknologi,” AS-SABIQUN, vol. 4, no. 1, pp. 102–114, Mar. 2022, doi: 10.36088/assabiqun.v4i1.1686.

[2] B. Liu, “Sentiment Analysis and Opinion Mining,” Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, May 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.

[3] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[4] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,” Am. Stat., vol. 46, no. 3, pp. 175–185, Aug. 1992, doi: 10.1080/00031305.1992.10475879.

[5] N. Azizah, R. Goejantoro, and Sifriyani, “Metode Naive Bayes Dengan PendekatanDistribusi Gauss Untuk Klasifikasi PeminatanPeserta Didik,” Pros. Semin. Nas. Mat. dan Stat., vol. 1, pp. 1–7, 2019, [Online]. Available: https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/520/217

[6] J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, Dec. 2021, doi: 10.29207/resti.v5i6.3588.

[7] M. R. Elfansyah, Rudiman, and F. Yulianto, “Perbandingan Metode K–Nearest Neighbor (Knn) Dan Naive Bayes Terhadap Analisis Sentimen Pada Pengguna E-Wallet Aplikasi Dana Menggunakan Fitur Ekstraksi Tf-Idf,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 8, no. 2, pp. 139–159, 2024.

[8] H. S. Utama, D. Rosiyadi, B. S. Prakoso, and D. Ariadarma, “Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 243–250, Aug. 2019, doi: 10.29207/resti.v3i2.1050.

[9] L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, Aug. 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

[10] Y. Zhao, M. Mamat, A. Aysa, and K. Ubul, “Multimodal sentiment system and method based on CRNN-SVM,” Neural Comput. Appl., vol. 35, no. 35, pp. 24713–24725, Dec. 2023, doi: 10.1007/s00521-023-08366-7.

[11] M. Rahardi, A. Aminuddin, F. F. Abdulloh, and R. A. Nugroho, “Sentiment Analysis of Covid-19 Vaccination using Support Vector Machine in Indonesia,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 6, 2022, doi: 10.14569/IJACSA.2022.0130665.

[12] A. E. Karyawati, P. A. Utomo, and I. G. A. Wibawa, “Comparison of SVM and LIWC for Sentiment Analysis of SARA,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 1, p. 45, Jan. 2022, doi: 10.22146/ijccs.69617.

[13] C. P. D. Cyril, J. R. Beulah, N. Subramani, P. Mohan, A. Harshavardhan, and D. Sivabalaselvamani, “An automated learning model for sentiment analysis and data classification of Twitter data using balanced CA-SVM,” Concurr. Eng., vol. 29, no. 4, pp. 386–395, Dec. 2021, doi: 10.1177/1063293X211031485.

[14] R. A. A. Renal, Syariful Alam, and Moch Hafid T, “Komparasi Payment Digital Untuk Analisis Sentimen Berdasarkan Ulasan Di Google Playstore Menggunakan Metode Support Vector Machine,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 118–128, Aug. 2023, doi: 10.55123/storage.v2i3.2337.

[15] M. Apriliyani, M. I. Musyaffaq, S. Nur’Aini, M. R. Handayani, and K. Umam, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes,” AITI, vol. 21, no. 2, pp. 298–311, Sep. 2024, doi: 10.24246/aiti.v21i2.298-311.

[16] S. S.K.Rastogi, R. Singhal, and A. Kumar, “An Improved Sentiment Classification using Lexicon into SVM,” Int. J. Comput. Appl., vol. 95, no. 1, pp. 37–42, Jun. 2014, doi: 10.5120/16562-6226.

[17] P. D. Silitonga and R. Damanik, “Perbandingan Algoritma k-Nearest Neighbors (k-NN) dan Support Vector Machines (SVM) untuk Klasifikasi Pengenalan Citra Wajah,” J. ICT Inf. Commun. Technol., vol. 20, no. 1, pp. 186–191, Jul. 2021, doi: 10.36054/jict-ikmi.v20i1.354.

[18] R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 427–434, Oct. 2018, doi: 10.25126/jtiik.201854773.

[19] A. Desiani et al., “Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris,” Indones. J. Appl. Informatics, vol. 7, no. 1, p. 12, Apr. 2023, doi: 10.20961/ijai.v7i1.61486.

[20] L. A. Susanto, “Komparasi Model Support Vector Machine Dan K-Nearest Neighbor Pada Analisis Sentimen Aplikasi Polri Super App,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, Apr. 2024, doi: 10.23960/jitet.v12i2.4152.

[21] E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, pp. 71–80, Jul. 2020, doi: 10.26623/transformatika.v18i1.2317.

[22] A. M. Ndapamuri, D. Manongga, and A. Iriani, “Analisis Sentimen Ulasan Aplikasi Tripadvisor Dengan Metode Support Vector Machine, K-Nearest Neighbor, Dan Naive Bayes,” INOVTEK Polbeng - Seri Inform., vol. 8, no. 1, p. 127, Jun. 2023, doi: 10.35314/isi.v8i1.3260.

[23] M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J., vol. 10, no. 02, pp. 71–76, Dec. 2020, doi: 10.32664/smatika.v10i02.455.

Downloads

Published

2025-06-18

How to Cite

[1]
Heti Aprilianti, Khothibul Umam, and Maya Rini Handayani, “Comparative Study of SVM, KNN, and Naïve Bayes for Sentiment Analysis of Religious Application Reviews”, JAIC, vol. 9, no. 3, pp. 920–927, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.