Sentiment Analysis of User Reviews of the AdaKami Online Loan App from the App Store Using SVM and Naive Bayes

Authors

  • Wava Lativa Azzahra Universitas Buana Perjuangan Karawang
  • Jamaludin Indra Universitas Buana Perjuangan Karawang
  • Rahmat Rahmat Universitas Buana Perjuangan Karawang
  • Sutan Faisal Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.30871/jaic.v9i3.9536

Keywords:

AdaKami, Apple App Store, Naive Bayes, Online Loans Sentiment Analysis, Support Vector Machine, TF-IDF

Abstract

This study aims to classify sentiments on user reviews of the AdaKami online loan application, which are obtained through web scraping techniques from the Apple App Store platform. A total of 2000 reviews were collected, then selected and 1000 reviews were selected to be manually labeled by two linguistic experts, to ensure the validity of the classification. Sentiments are divided into three categories, namely negative, neutral, and positive. The classification model was built using two machine learning algorithms, namely Support Vector Machine (SVM) and Naïve Bayes (NB). The evaluation was carried out by measuring accuracy, precision, recall, F1-score, as well as through confusion matrix and cross-validation. The results showed that SVM performed better, with an accuracy of 97.5%, an F1-score of 0.97, and an average cross-validation accuracy of 84.69%. In contrast, Naïve Bayes recorded an accuracy of 81.4% and an F1-score of 0.77. The results of the paired t-test showed that the difference in performance between the two models was statistically significant (p < 0.05). The SVM model was then applied to predict 971 unlabeled reviews, and the results showed a dominance of negative sentiment. Wordcloud visualizations reinforced this finding, with words such as “bilih”, “bunganya”, and “teror” as the most frequently occurring words. These findings prove that SVM is more effective in classifying online loan review sentiments, as well as providing important insights for developers in understanding user perceptions and experiences.

Downloads

Download data is not yet available.

References

[1] M. Hafil, “AdaKami dorong perekonomian masyarakat Indonesia,” Republika Online, 2022. [Online]. Available:

[2] D. Febriana, A. N. Putri, dan R. A. Santoso, “Perbandingan algoritma dalam analisis sentimen aplikasi,” Jurnal Informatika dan Komputasi, vol. 10, no. 3, 2023.

[3] R. A. E. Wahyuni dan B. E. Turisno, “Praktik finansial teknologi ilegal dalam bentuk pinjaman online ditinjau dari etika bisnis,” Jurnal Pembangunan Hukum Indonesia, vol. 1, no. 3, pp. 379–391, 2019.

[4] D. N. Sastradinata, “Aspek hukum lembaga pinjaman online ilegal di Indonesia,” Jurnal Independent, vol. 8, no. 1, p. 293, 2020.

[5] Kementerian Keuangan, “Laporan fintech lending di Indonesia,” 2021.

[6] S. R. Irawan, L. Humaira, dan S. A. Sjarif, “Peran AdaKami dalam akses pinjaman tanpa jaminan,” Lex Patrimonium, vol. 3, no. 1, pp. 1–17, 2024.

[7] M. Raharja dan B. Sulistyo, “Analisis sentimen ulasan aplikasi media berita online,” Jurnal Informatika dan Sistem Informasi, vol. 8, no. 4, pp. 45–53, 2021.

[8] A. Yulianto dan D. Kurniawan, “Analisis sentimen ulasan aplikasi dengan algoritma Naïve Bayes: Studi kasus pada platform E-Commerce,” Jurnal Sistem Informasi, vol. 16, no. 1, pp. 45–56, 2024.

[9] A. Sasmitha dan B. Harto, “Analisa perhitungan suku bunga pinjaman harian pada aplikasi pinjaman online legal menggunakan metode simple interest,” ATRABIS, vol. 7, no. 2, pp. 132–139, 2021.

[10] F. H. Setiawan, I. P. Radjamin, dan M. Ariani, “Pinjaman online: Perilaku konsumtif mahasiswa Surabaya dalam menunjang status sosial,” MSEJ, vol. 5, no. 1, pp. 413–425, 2023.

[11] H. Putra dan L. Rahmawati, “Analisis sentimen pada tweet tentang pinjaman online menggunakan metode Random Forest,” Jurnal Informatika dan Komputasi, vol. 14, no. 3, pp. 213–220, 2022.

[12] B. Pang dan L. Lee, “Opinion mining and sentiment analysis,” Foundations and Trends in Information Retrieval, vol. 2, no. 1–2, pp. 1–135, 2008.] C. Cortes dan V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.

[13] N. Cristianini dan J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.

[14] F. A. Indriyani, A. Fauzi, dan S. Faisal, “Analisis sentimen aplikasi TikTok menggunakan algoritma Naïve Bayes dan Support Vector Machine,” TEKNOSAINS, vol. 10, no. 2, pp. 176–184, 2024.

[15] Rahayu, I. P., Fauzi, A., & Indra, J. (2022). Analisis sentimen terhadap program Kampus Merdeka menggunakan Naive Bayes dan Support Vector Machine. Jurnal Sistem Komputer dan Informatika (JSON, 4(2), 296–301.

[16] Y. Cahyana and A. M. Siregar, “Analisis Sentimen Pembelajaran Tatap Muka Terbatas (PTMT) Selama Pandemik COVID-19 Menggunakan Algoritma Naïve Bayes,” Petir: Jurnal Teknik dan Rekayasa, vol. 16, no. 2, pp. 200–211, 2023.

[17] F. N. Azzahra, T. Rohana, R. Rahmat, and A. R. Juwita, “Penerapan Metode Naive Bayes Dalam Klasifikasi Spam SMS Menggunakan Fitur Teks Untuk Mengatasi Ancaman Pada Pengguna,” Journal of Information System Research (JOSH), vol. 5, no. 3, pp. 873–880, 2024.

[18] M. F. Haikal, J. Indra, dan R. Rahmat, “Analisis sentimen bakal calon presiden Indonesia 2024 dengan algoritma Naïve Bayes,” JUTISI, vol. 13, no. 1, pp. 43–51, 2024.

[19] A. Adela, F. Nurjanah, dan R. Setiawan, “Analisis sentimen ulasan aplikasi pinjaman online,” Jurnal Teknologi Informasi dan Komunikasi, vol. 15, no. 2, pp. 112–125, 2023.

Downloads

Published

2025-06-17

How to Cite

[1]
W. L. . Azzahra, Jamaludin Indra, R. Rahmat, and Sutan Faisal, “Sentiment Analysis of User Reviews of the AdaKami Online Loan App from the App Store Using SVM and Naive Bayes”, JAIC, vol. 9, no. 3, pp. 838–850, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.