Optimizing Support Vector Machine (SVM) for Sentiment Analysis of Blu by BCA Reviews with Chi-Square
DOI:
https://doi.org/10.30871/jaic.v9i5.10541Keywords:
Sentiment Analysis, Support Vector Machine, Term Frequency-Inverse , Document Frequency, Chi-Square, SMOTEAbstract
One of the products resulting from the development of financial technology is the blu by BCA application. This app can be downloaded by BCA bank users via the Google Play Store and has received various user responses in the form of reviews. Analyzing these user reviews can serve as a valuable reference for further development and decision-making by BCA regarding the blu app. Sentiment analysis is conducted using the Support Vector Machine (SVM) algorithm, with SMOTE and TF-IDF techniques, and feature selection via Chi-Square. Sentiment classification using the SVM algorithm and feature selection has produced various outcomes in previous studies. Therefore, further research is necessary to analyze reviews of the blu application. This study aims to optimize the SVM method in analyzing user sentiment on the blu by BCA application by applying Chi-Square feature selection to improve sentiment classification performance. The research method includes the following stages: scraping, preprocessing, labeling, TF-IDF transformation, Chi-Square feature selection, SMOTE, data splitting, data mining, and evaluation. The testing results show that the RBF kernel achieved the highest performance with an accuracy of 0.8623, precision of 0.8623, recall of 0.8623, and F1-score of 0.8623. After applying Chi-Square feature selection, the accuracy improved to 0.8726, with precision of 0.8747, recall of 0.8725, and F1-score of 0.8723. This optimization successfully increased the accuracy by 0.0103 or 1.03%, while also improving precision, recall, and F1-score, indicating that feature selection contributes significantly to sentiment classification performance.
Downloads
References
[1] Imhar and I. Umirahmah, “Pengaruh Teknologi Finansial (Fintech) Terhadap Strategi Perbankan Pada PT. Bank Central Asia (BCA),” J. Publ. Sist. Inf. dan Manaj. Bisnis, vol. 1, no. 1, pp. 58–62, 2022.
[2] Y. S. Atmaja and D. H. Paulus, “Partisipasi Bank Indonesia Dalam Pengaturan Digitalisasi Sistem Pembayaran Indonesia,” J. Masal. Huk., vol. 51, no. 3, pp. 271–286, 2022.
[3] D. Sabrina, A. D. Sabilla, and N. Azizah, “Kombinasi Vader Lexicon dan Support Vector Machine untuk Klasifikasi Sentimen Komentar Aplikasi Blu BCA,” Inf. Syst. Emerg. Technol. J., vol. 6, no. 1, pp. 22–33, 2025.
[4] S. Rabbani, D. Safitri, N. Ramadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023.
[5] Sukirman, N. P. Husain, A. F. Syam, and R. Mustikosari, “Analisis Sentimen Ulasan Pengguna Tiktok pada Google Play Store Berbasis TF-IDF dan Support Vector Machine,” J. Syst. Comput. Eng., vol. 5, no. 1, pp. 91–102, 2024.
[6] N. Meilani, Furqan, and Suhardi, “Analisis Sentimen Pengguna Aplikasi BSI Mobile Akibat Ransomware Menggunakan Algoritma Support Vector Machine,” J. Inform. Teknol., vol. 5, no. 1, pp. 42–51, 2024.
[7] R. O. Mardiyanto, Kusrini, and F. W. Wibowo, “Analisis Sentimen Pengguna Aplikasi Bank Syariah Indonesia dengan Menggunakan Algorita Support Vector Machine (SVM),” J. Tek., vol. 4, no. 1, pp. 9–15, 2023.
[8] I. Bazar, F. Wajidi, and A. A. A. Cirua, “Analisis Sentimen Ulasan Aplikasi Wondr by BNI Menggunakan Algoritma SVM dengan Optimasi Kernel Trick,” J. Ilm. Tek. dan Ilmu Komput., vol. 4, no. 2, pp. 69–81, 2025.
[9] Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” J. Tek. Inform. dan Sist. Inf., vol. 9, no. 4, pp. 3436–3442, 2022.
[10] C. A. Aurelia, Trimono, and I. G. S. A. Diyasa, “Analisis Sentimen Penggunaan Galon BPA Menggunakan Seleksi Fitur Chi-Square dan Algoritma Support Vector Machine,” J. Ilm. Teknol. Inf. Asia, vol. 18, no. 2, pp. 40–49, 2024.
[11] F. Rahmasari, N. Rahaningsih, R. D. Dana, and C. L. Rohmat, “Optimasi Analisis Sentimen Aplikasi GLINTS Menggunakan Algoritma Support Vector Machine (SVM),” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 1, pp. 558–570, 2025.
[12] J. A. Nursiyono, Machine Learning dengan R Teori dan Praktikum. Malang: Media Nusa Creative, 2023.
[13] V. P. Rantung, Teknik-Teknik Pemrosesan Bahasa Alami (NLP). Jawa Tengah: Lakeisha, 2023.
[14] Harnelia and R. A. Saputra, “Analisis Sentimen Review Skincare Skintific dengan Algoritma Support Vector Machine (SVM),” J. Inform. dan Tek. Elektro Terap., vol. 2, no. 2, pp. 994–1002, 2024.
[15] Nuryani and F. Alhafid, Implementasi SWARM Support Vector Machine untuk Deteksi Fibrilasi Atrium Menggunakan Elektrokardiogram. Surabaya: Jakad Media Publishing, 2024.
[16] A. Ahmad, R. E. Mirati, and E. Purwaningrium, “Pengaruh Brand Image dan Product Design Terhadap Keputusan Menggunakan Bank Digital (Studi Kasus Blu by BCA Digital),” Indones. J. Econ. Business, Entrep. Financ., vol. 4, no. 1, pp. 606–618, 2024.
[17] E. R. M. Sholihah, I. G. S. Diyase, and E. Y. Puspaningrum, “Perbandingan Kinerja Kernel Linear dan RBF Support Vector Machine untuk Analisis Sentimen Ulasan Pengguna KAI Access Pada Google Play Store,” J. Mhs. Tek. Inform., vol. 8, pp. 728–733, 2024.
[18] M. U. Albab, Y. Kurniawati, and M. N. Fawaiq, “Optimization of the Stemming Technique on Text Preprocessing President 3 Periods Topic,” J. Transform., vol. 20, no. 2, pp. 1–10, 2023.
[19] S. Khairunnisa, Adiwijaya, and S. A. Faraby, “Pengaruh Text Preprocessing Terhadap Analisis Sentimen Komentar Masyarakat Pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, pp. 406–414, 2021.
[20] G. A. B. Suryanegara, Adiwijaya, and M. D. Pubolaksono, “Peningkatan Hasil Klasifikasi Pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” J. Rekayasa Sist. dan Teknol. Inf., vol. 5, no. 1, pp. 114–122, 2021.
[21] A. F. Aufar, M. A. Rosid, I. Ratna, and I. Astutik, “Mengoptimalkan Preprocessing Teks untuk Analisis Sentimen yang Akurat pada Ulasan E-Wallet,” J. Inf. Comput. Technol. Educ., vol. 7, no. 2, pp. 42–50, 2023.
[22] D. Wardhani, R. Astuti, and D. D. Saputra, “Optimasi Feature Selection Text Mining: Stemming dan Stopword untuk Sentimen Analisis Aplikasi SatuSehat,” J. Soc. Sci. Res., vol. 4, no. 1, pp. 7537–7548, 2024.
[23] A. Santosa, I. Purnamasari, and R. Mayasari, “Pengaruh Stopword Removal dan Stemming Terhadap Performa Klasifikasi Teks Komentar Kebijakan New Normal Menggunakan Algoritma LSTM,” J. Sains Komput. dan Inform., vol. 6, no. 1, pp. 81–93, 2022.
[24] A. Nafi, A. T. J. Harjanta, B. A. Herlambang, and F. Saeful, “Analisis Sentimen Review Pelanggan Lazada dengan Sastrawi Stemmer dan SVM-PSO untuk Memahami Respon Pengguna,” J. Inf. Technol., vol. 12, no. 2, pp. 330–339, 2022.
[25] W. Winata, A. Zaidiah, and N. Chamidah, “Analisis Sentimen Pada Ulasan Produk Masker di Marketplace Shopee Menggunakan Support Vector Machine dan Seleksi Fitur Chi Square,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., vol. 3, no. 2, pp. 491–500, 2022.
[26] N. Zelina and A. Afiyati, “Analisis Sentimen Ulasan Pengguna Aplikasi M-Banking Menggunakan Algoritma Support Vector Machine dan Decision Tree,” J. Linguist. Komputasional, vol. 7, no. 1, pp. 31–37, 2024.
[27] C. R. A. Widiawati and A. M. Wahid, Pemrosesan Bahasa Alami Konsep, Algoritma dan Implementasi. Banyumas: Zahira Media Publisher, 2025.
[28] M. A. Hermawan, A. Faqih, and G. Dwilestari, “Implementasi Akurasi Model Naive Bayes Menggunakan SMOTE Dalam Analisis Sentimen Pengguna Aplikasi BRIMO,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 1, pp. 855–862, 2025.
[29] R. Wahyudi, Kurniawan, and Y. A. Wijaya, “Analisis Sentimen Pengguna Terhadap Aplikasi Blu BCA di Playstore Menggunakan Algoritma Naive Bayes (Studi Kasus Sentimen Pengguna Terhadap Pengalaman Aplikasi Blu BCA),” J. Mhs. dan Tek. Inform., vol. 8, no. 3, pp. 2511–2517, 2024.
[30] P. Setiyadi, M. N. Prayogi, and A. Solichin, “Optimalisasi Prediksi Kehilangan Karyawan Menggunakan Teknik RFE, Smote, dan Adaboost,” J. Ilm. Penelit. Inform., vol. 9, no. 4, pp. 2131–2145, Dec. 2024, doi: 10.29100/jipi.v9i4.5642.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aldi Widodo, Bambang Agus Herlambang, Ramadhan Renaldy

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








