Sentiment-Based Knowledge Discovery of Wondr by BNI App Reviews Using SVM, KNN, and Naive Bayes for CRM Enhancement
DOI:
https://doi.org/10.30871/jaic.v9i5.10323Keywords:
Sentiment Analysis, Knowledge Discovery, User Loyalty, Machine Learning, Wondr by BNIAbstract
The rapid development of digital banking services has necessitated a deeper understanding of user perceptions and satisfaction levels. This study analyzes sentiment from user reviews of the Wondr by BNI app using a Knowledge Discovery approach and machine learning methods. Three classification algorithms were compared: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes, evaluated with accuracy, precision, recall, and f1-score. The results show that SVM and Naive Bayes achieved the best performance with F1-scores of 0.88 and 0.87, while KNN lagged behind with 0.77. An ANOVA test further confirmed that the performance differences were statistically significant (p < 0.05), with SVM and Naive Bayes consistently outperforming KNN. Word Cloud analysis revealed dominant positive terms such as "easy," "fast," and "transaction," alongside negative terms like "login," "difficult," and "verification." These findings highlight user appreciation for simplicity and speed, while pointing out functional issues that require attention. This research not only enriches the literature on Indonesian-language sentiment analysis in the financial sector but also provides practical insights for Customer Relationship Management (CRM), particularly in strengthening customer retention strategies and guiding UX redesign for digital banking services.
Downloads
References
[1] R. A. Akob and Z. Sukarno, “Pengaruh Kualitas Layanan Mobile Banking terhadap Kepuasan dan Loyalitas Nasabah Bank BUMN di Makassar,” Jurnal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, vol. 11, no. 2, pp. 269–283, Feb. 2022, doi: 10.30588/jmp.v11i2.889.
[2] N. A. Rahman, S. D. Idrus, and N. L. Adam, “Classification of customer feedbacks using sentiment analysis towards mobile banking applications,” IAES International Journal of Artificial Intelligence, vol. 11, no. 4, pp. 1579–1587, Dec. 2022, doi: 10.11591/ijai.v11.i4.pp1579-1587.
[3] T. Winasih and L. Hakim, “Peran Kepuasan Sebagai Variabel Mediasi Kualitas Layanan dan Kepercayaan Nasabah terhadap Loyalitas Nasabah Bank Syariah,” Iqtishadia : Jurnal Ekonomi dan Perbankan Syariah, vol. 8, no. 2, pp. 206–219, Dec. 2021, doi: 10.1905/iqtishadia.v8i2.4152.
[4] S. Muliadi, “Determinan Loyalitas Nasabah Bank NTB Syariah,” IQTISHADUNA: Jurnal Ilmiah Ekonomi Kita, vol. 11, no. 2, pp. 184–199, Dec. 2022, doi: 10.46367/iqtishaduna.v11i2.825.
[5] A. Govindaraj and R. A. Muthalif, “Analyzing The Implementation And Impact Of Electronic Customer Relationship Management (E-Crm) In State Bank Of India: A Case Study On Enhancing Customer Engagement And Service Efficiency,” Proceedings on Engineering Sciences, vol. 6, no. 3, pp. 989–994, 2024, doi: 10.24874/PES06.03.011.
[6] H. Basri, M. B. S. Junianto, and I. Kusyadi, “Enhancing Usability Testing Through Sentiment Analysis: A Comparative Study Using SVM, Naive Bayes, Decision Trees and Random Forest,” Jurnal Teknologi Sistem Informasi dan Aplikasi, vol. 7, no. 4, pp. 1603–1610, Oct. 2024, doi: 10.32493/jtsi.v7i4.45117.
[7] C. Zhang, X. Wang, A. P. Cui, and S. Han, “Linking big data analytical intelligence to customer relationship management performance,” Industrial Marketing Management, vol. 91, pp. 483–494, Nov. 2020, doi: 10.1016/j.indmarman.2020.10.012.
[8] M. D. Bimantara and I. Zufria, “Text Mining Sentiment Analysis on Mobile Banking Application Reviews using TF-IDF Method with Natural Language Processing Approach,” JINAV: Journal of Information and Visualization, vol. 5, no. 1, pp. 115–123, Jul. 2024, doi: 10.35877/454ri.jinav2772.
[9] Y. Christian, T. Wibowo, and M. Lyawati, “Sentiment Analysis by Using Naïve Bayes Classification and Support Vector Machine, Study Case Sea Bank,” Sinkron, vol. 9, no. 1, pp. 258–275, Jan. 2024, doi: 10.33395/sinkron.v9i1.13141.
[10] A. Riadsolh, I. Lasri, and M. Elbelkacemi, “Cloud-based sentiment analysis for measuring customer satisfaction in the moroccan banking sector using naïve bayes and stanford nlp,” Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 14, no. 4, pp. 64–71, 2020, doi: 10.14313/JAMRIS/4-2020/47.
[11] Kusnawi, M. Rahardi, and V. D. Pandiangan, “International Journal On Informatics Visualization journal homepage : www.joiv.org/index.php/joiv International Journal On Informatics Visualization Sentiment Analysis of Neobank Digital Banking Using Support Vector Machine Algorithm in Indonesia,” JOIV : International Juournal On Informatics Visualization, vol. 7, no. 2, pp. 377–383, 2023, Accessed: Jul. 08, 2025. [Online]. Available: https://dx.doi.org/10.30630/joiv.7.2.1652
[12] A. Mohanty and R. C. Cherukuri, “Sentiment Analysis on Banking Feedback and News Data using Synonyms and Antonyms,” IJACSA) International Journal of Advanced Computer Science and Applications, vol. 14, no. 12, pp. 934–944, 2023, doi: 10.14569/IJACSA.2023.0141294.
[13] B. Plubin, W. Bunyatisai, S. Plubin, and K. Jiamwattanapong, “Robust Optimization Base Deep Learning Model for Thai Banking Reviews Sentiment Analysis with Imbalanced Data,” Pak J Life Soc Sci, vol. 22, no. 2, pp. 3330–3350, 2024, doi: 10.57239/PJLSS-2024-22.2.00245.
[14] Edwina and T. Mauritsius, “Data-Driven Insights for Mobile Banking App Improvement: A Sentiment Analysis and Topic Modelling Approach for SimobiPlus User Reviews,” International Journal of Engineering Trends and Technology, vol. 72, no. 6, pp. 347–360, Jun. 2024, doi: 10.14445/22315381/IJETT-V72I6P132.
[15] D. P. de Jesus and C. da N. Besarria, “Machine learning and sentiment analysis: Projecting bank insolvency risk,” Research in Economics, vol. 77, no. 2, pp. 226–238, Jun. 2023, doi: 10.1016/j.rie.2023.03.001.
[16] N. A. Sofiah, K. D. Tania, A. Meiriza, and A. Wedhasmara, “A Comparative Assessment SARIMA and LSTM Models for the Gurugram Air Quality Index’s Knowledge Discovery,” in 2024 International Conference on Electrical Engineering and Computer Science (ICECOS), IEEE, Sep. 2024, pp. 26–31. doi: 10.1109/ICECOS63900.2024.10791243.
[17] S. Khairunnisa, Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” Jurnal Media Informatika Budidarma, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.
[18] H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, Feb. 2021, doi: 10.34148/teknika.v10i1.311.
[19] Herwinsyah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, 2022, doi: 10.47080/simika.v5i1.1411.
[20] B. Laurensz and E. Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi |, vol. 10, no. 2, 2021, doi: 10.22146/jnteti.v10i2.1421.
[21] H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indonesian Journal of Applied Statistics, vol. 5, no. 1, p. 31, May 2022, doi: 10.13057/ijas.v5i1.56825.
[22] S. Juanita, “Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes,” Jurnal Media Informatika Budidarma, vol. 4, no. 3, pp. 552–558, Jul. 2020, doi: 10.30865/mib.v4i3.2140.
[23] G. K. Putri, H. Sujaini, and D. I. Ulumi, “Perbandingan Algoritma Support Vector Machine (SVM) dan Naive Bayes pada Analisis Sentimen Bahasa Jawa dan Sunda,” JUSTIN : Jurnal Sistem dan Teknologi Informasi, vol. 13, no. 2, pp. 299–306, 2025, doi: 10.26418/justin.v13i2.88285.
[24] A. S. Dharma and Y. G. R. Saragih, “Comparison of Feature Extraction Methods on Sentiment Analysis in Hotel Reviews,” Sinkron : Jurnal dan Penelitian Teknik Informatika, vol. 6, no. 4, pp. 2349–2354, Oct. 2022, doi: 10.33395/sinkron.v7i4.11706.
[25] M. Lestandy, Abdurrahim, and L. Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” Jurnal RESTI, vol. 5, no. 4, pp. 802–808, Aug. 2021, doi: 10.29207/resti.v5i4.3308.
[26] S. M. P. Tyas, B. S. Rintyarna, and W. Suharso, “The Impact of Feature Extraction to Naïve Bayes Based Sentiment Analysis on Review Dataset of Indihome Services,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 1–10, Apr. 2022, doi: 10.31849/digitalzone.v13i1.9158.
[27] P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 1, pp. 147–156, 2021, doi: 10.25126/jtiik.202183944.
[28] N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM),” Jurnal Gaussian, vol. 9, no. 3, pp. 376–390, 2020, doi: 10.14710/j.gauss.9.3.376-390.
[29] A. R. Isnain, J. Supriyanto, and M. P. Kharisma, “Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 2, p. 121, Apr. 2021, doi: 10.22146/ijccs.65176.
[30] F. M. J. M. Shamrat et al., “Sentiment analysis on twitter tweets about COVID-19 vaccines using NLP and supervised KNN classification algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 1, pp. 463–470, Jul. 2021, doi: 10.11591/ijeecs.v23.i1.pp463-470.
[31] H. A. Santoso, E. H. Rachmawanto, A. Nugraha, A. A. Nugroho, D. R. I. M. Setiadi, and R. S. Basuki, “Hoax classification and sentiment analysis of Indonesian news using Naive Bayes optimization,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 2, pp. 799–806, Apr. 2020, doi: 10.12928/TELKOMNIKA.V18I2.14744.
[32] A. R. Isnain, N. S. Marga, and D. Alita, “Sentiment Analysis Of Government Policy On Corona Case Using Naive Bayes Algorithm,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 1, p. 55, Jan. 2021, doi: 10.22146/ijccs.60718.
[33] M. F. Fakhrezi, A. F. Rochim, and D. M. K. Nugraheni, “Comparison of Sentiment Analysis Methods Based on Accuracy Value Case Study: Twitter Mentions of Academic Article,” Jurnal RESTI, vol. 7, no. 1, pp. 161–167, Feb. 2023, doi: 10.29207/resti.v7i1.4767.
[34] E. D. Madyatmadja, Shinta, D. Susanti, F. Anggreani, and D. J. M. Sembiring, “Sentiment Analysis on User Reviews of Mutual Fund Applications,” Journal of Computer Science, vol. 18, no. 10, pp. 885–895, 2022, doi: 10.3844/jcssp.2022.885.895.
[35] D. A. Agustina, S. Subanti, and E. Zukhronah, “Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine,” IJAS: Indonesian Journal of Applied Statistic, vol. 3, no. 2, pp. 109–122, 2020, doi: 10.13057/ijas.v3i2.44337.
[36] V. Novalia, K. Ditha Tania, A. Meiriza, and A. Wedhasmara, “Knowledge Discovery of Application Review Using Word Embedding’s Comparison with CNN-LSTM Model on Sentiment Analysis,” in 2024 International Conference on Electrical Engineering and Computer Science (ICECOS), IEEE, Sep. 2024, pp. 234–238. doi: 10.1109/ICECOS63900.2024.10791113.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zahra Tri Zafira, Ken Ditha Tania, Winda Kurnia Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








