Sentiment Analysis of Coretax on Social Media X Using Naive Bayes, SVM, and LSTM for Service Improvement
DOI:
https://doi.org/10.30871/jaic.v9i6.11063Keywords:
Sentiment Analysis, Coretax, Naive Bayes, Support Vector Machine, LSTMAbstract
In January 2025, Indonesia’s Ministry of Finance launched Coretax to replace DJP Online. However, the launch triggered widespread dissatisfaction among users, reflecting negative public sentiment. This study aims to analyze public perception of Coretax and evaluate the performance of machine learning models in sentiment classification. A total of 6.036 Indonesian language tweets related to Coretax, posted between January and April 2025, were collected using Tweet Harvest. The dataset consists of 0,83% positive, 51,05% negative, and 48,11% neutral sentiments. The research methodology involved several stages: data crawling, manual labeling, preprocessing (cleaning, case folding, stopword removal, tokenization, normalization, stemming, and specifically for LSTM: conversion of tokens into numerical indices, padding, and embedding), feature representation using TF-IDF for classical models and word embedding for deep learning, data balancing with SMOTE, model implementation (Naive Bayes, Support Vector Machine with various kernels, and LSTM), model evaluation and comparison, and visualization through word clouds. The application of SMOTE succeeded in improving the performance of all algorithms. After applying SMOTE, the SVM with the RBF kernel achieved the best performance with 90,70% accuracy, 91% precision, 90,66% recall, and 90,66% F1-score. Keyword analysis revealed that terms such as “data” and “mudah” dominated positive sentiment, “silakan” and “kakak” were prevalent in neutral sentiment, while “sistem” and “error” frequently appeared in negative sentiment. The findings highlight the urgent need for system infrastructure improvements, user-centered features, responsive technical support, taxpayer training, and continuous updates to enhance Coretax and restore public trust.
Downloads
References
[1] S. A. Ilanoputri, “Pelayanan Yang Diterima Oleh Masyarakat Sebagai Pembayar Pajak Berdasarkan Penerapan Beban Pajak Daerah Yang Diatur Dalam Undang-Undang Pajak Dan Retribusi Daerah,” Cepalo, vol. 4, no. 2, pp. 143–156, 2020, doi: 10.25041/cepalo.v4no2.2067.
[2] F. Aqmarina and I. K. Furqon, “Peran Pajak sebagai Instrumen Kebijakan Fiskal dalam Mengantisipasi Krisis Ekonomi pada Masa Pandemi Covid-19,” Finans. J. Akunt. dan Perbank. Syariah, vol. 3, no. 2, pp. 255–274, 2020, doi: 10.32332/finansia.v3i2.2507.
[3] “Coretax: Sistem Canggih Tingkatkan Kepatuhan Sukarela | Direktorat Jenderal Pajak.” Accessed: Feb. 22, 2025. [Online]. Available: https://pajak.go.id/id/artikel/coretax-sistem-canggih-tingkatkan-kepatuhan-sukarela
[4] “Panduan Core Tax System dan Cara Kerjanya.” Accessed: Feb. 26, 2025. [Online]. Available: https://klikpajak.id/blog/core-tax-administration-system/
[5] Juniarti, L. Noersanti, A. Akhmadi, P. A. Ardheta, and S. N. Auzaini, “Digitalisasi Perpajakan: Tantangan, Peluang, dan Dampaknya terhadap Kepercayaan Publik serta Kewajiban Pajak di Tokopedia,” J. Akunt. STEI, vol. 11, no. 1, pp. 1–12, 2025, [Online]. Available: https://doi.org/10.36406/jasstei.v11i1.37
[6] A. K. jama, H. N. Priyatna, and A. S. Tampunolon, “Dampak Perkembangan Aplikasi Dan Kebijakan Perpajakan Terhadap Kepercayaan Publik,” J. Ris. Ilmu Ekon., vol. 1, no. 1, pp. 39–49, 2025.
[7] Lady Agustine Fitrana, S. Linawati, N. Herlinawati, R. Sa’adah, and S. Seimahuria, “Analisis Sentimen Pengguna Twitter Terhadap Brand Indosat Menggunakan Metode Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 4291–4297, 2024, doi: 10.36040/jati.v8i3.9866.
[8] Y. Mao, Q. Liu, and Y. Zhang, “Sentiment analysis methods, applications, and challenges: A systematic literature review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 4, p. 102048, 2024, doi: 10.1016/j.jksuci.2024.102048.
[9] Z. Drus and H. Khalid, “Sentiment analysis in social media and its application: Systematic literature review,” Procedia Comput. Sci., vol. 161, pp. 707–714, 2019, doi: 10.1016/j.procs.2019.11.174.
[10] M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi Dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia Di Google Playstore Menggunakan Metode Support Vector Machine,” J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, pp. 1–13, 2022, doi: 10.33701/jtkp.v4i1.2701.
[11] J. Homepage, D. Pramudita, Y. Akbar, and T. Wahyudi, “Sentiment Analysis of the Indonesian Smart College Card Program on Social Media X Using the Naive Bayes Algorithm Analisis Sentimen Terhadap Program Kartu Indonesia Pintar Kuliah Pada Media Sosial X Menggunakan Algoritma Naive Bayes,” Malcom, vol. 4, no. October, pp. 1420–1430, 2024.
[12] A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023, doi: 10.36040/jati.v7i1.6303.
[13] A. C. Najib, A. Irsyad, G. A. Qandi, and N. A. Rakhmawati, “Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter,” Fountain Informatics J., vol. 4, no. 2, pp. 41–48, 2019, doi: 10.21111/fij.v4i2.3573.
[14] R. Liu, Y. Jiang, and J. Lin, “Forecasting the Volatility of Specific Risk for Stocks with LSTM,” Procedia Comput. Sci., vol. 202, pp. 111–114, 2022, doi: 10.1016/j.procs.2022.04.015.
[15] E. P. Wijaya and M. H. Rifqo, “Application of Naive Bayes Algorithm in Analyzing Public Sentiment towards Coretax on Platform X,” J. Artif. Intell. Softw. Eng., vol. 5, no. 2, pp. 564–572, 2025, doi: 10.30811/jaise.v5i2.6949.
[16] F. Fathoni, A. Faradhisa Ansori, I. Nailah Ramadhani, C. Rahmi Anissa, and S. Amelia Putri, “Analisis Sentimen Masyarakat Indonesia Di Twitter Terhadap Sistem Perpajakan ‘Coretax’ Menggunakan Metode Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 4, pp. 6749–6753, 2025, doi: 10.36040/jati.v9i4.14214.
[17] A. Ramadhani, I. Permana, M. Afdal, and M. Fronita, “Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo–Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine,” Build. Informatics, Technol. Sci., vol. 6, no. 3, p. 1509−1516, 2024, [Online]. Available: https://ejurnal.seminar-id.com/index.php/bits/article/view/6188/3222
[18] D. N. Novianti, D. F. Shiddieq, F. F. Roji, and W. Susilawati, “Comparison of Support Vector Machine and Naïve Bayes Algorithms for Sentiment Analysis of the Metaverse,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. April, pp. 231–239, 2024.
[19] S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.
[20] J. S. Gea, H. Budiati, and S. S. B. Kristian Juri Damai Lase, “Analisis Sentimen Masyarakat Terhadap Direktorat Jenderal Pajak,” J. InFact Sains Dan Komput., vol. 8, no. 01, pp. 30–36, 2024, doi: 10.61179/jurnalinfact.v8i01.466.
[21] P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, pp. 1020–1028, 2022, doi: 10.30865/jurikom.v9i4.4673.
[22] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ. Res. Methods, vol. 25, no. 1, pp. 114–146, 2022, doi: 10.1177/1094428120971683.
[23] E. Alshdaifat, D. Alshdaifat, A. Alsarhan, F. Hussein, and S. Moh, “The Effect of Preprocessing Techniques, Applied to Numeric Features, on Classification Algorithms’ Performance,” Data, vol. 6, no. 11, 2021.
[24] D. Septiani and I. Isabela, “Analisis Term Frequency Inverse Document Frequency (TF-IDF) Dalam Temu Kembali Informasi Pada Dokumen Teks,” SINTESIA J. Sist. dan Teknol. Inf. Indones., vol. 1, no. 2, pp. 81–88, 2023.
[25] E. B. Fatima, O. Boutkhoum, E. M. Abdelmajid, F. Rustam, A. Mehmood, and G. S. Choi, “Minimizing the Overlapping Degree to Improve Class-Imbalanced Learning under Sparse Feature Selection: Application to Fraud Detection,” IEEE Access, vol. 9, pp. 28101–28110, 2021, doi: 10.1109/ACCESS.2021.3056285.
[26] R. W. Pratiwi, S. F. H, D. Dairoh, D. I. Af’idah, Q. R. A, and A. G. F, “Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 1, pp. 40–46, 2021, doi: 10.20895/inista.v4i1.387.
[27] R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inform., vol. 8, no. 2, pp. 111–122, 2021, doi: 10.31294/ji.v8i2.10494.
[28] T. M. Permata Aulia, N. Arifin, and R. Mayasari, “Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19,” SINTECH (Science Inf. Technol. J., vol. 4, no. 2, pp. 139–145, 2021, doi: 10.31598/sintechjournal.v4i2.762.
[29] L. Rohmatun and A. Baita, “Machine Learning-Based Sentiment Analysis on Twitter ( X ): A Case Study of the ‘ Kabur Aja Dulu ’ Issue Using SVM,” J. Appl. Informatics Comput., vol. 9, no. 4, pp. 1972–1983, 2025.
[30] G. Tamami, W. A. Triyanto, and S. Muzid, “Sentiment Analysis Mobile JKN Reviews Using SMOTE Based LSTM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 19, no. 1, pp. 13–24, 2025, doi: 10.22146/ijccs.101910.
[31] C. M. Putri, M. Afdal, R. Novita, and M. Mustakim, “Perbandingan Evaluasi Kernel Support Vector Machine dalam Analisis Sentimen Chatbot AI pada Ulasan Google Play Store,” J. Teknol. Sist. Inf. dan Apl., vol. 7, no. 3, pp. 1236–1245, 2024, doi: 10.32493/jtsi.v7i3.41354.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Steven Dermawan, Afifah Trista Ayunda

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








