Image-Based Classification of Indonesian Traditional Houses Using a Hybrid CNN-SVM Algorithm

Authors

  • M. Ikhsan Universitas Amikom Yogyakarta
  • Majid Rahardi Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i5.10864

Keywords:

Image Classification, Hybrid Model, CNN-SVM, Traditional House, Machine Learning

Abstract

The diversity of Indonesian traditional houses represents a cultural heritage that must be preserved. However, the lack of interest among younger generations and the difficulty in recognizing the distinctive architectural characteristics of traditional houses present challenges to preservation efforts. This study aims to develop an image classification model for Indonesian traditional houses using a hybrid CNN-SVM approach to improve recognition accuracy. The dataset consists of 3,919 images from five classes of traditional houses, namely gadang, joglo, panjang, tongkonan, and honai, with an 80% training split, 10% validation, and 10% testing. The data were processed through resizing, augmentation, and normalization before being trained using a CNN architecture with five convolutional layers as a feature extractor and an SVM serving as a multi-class classifier. The experimental results show that the hybrid CNN-SVM model achieved an accuracy of 96.68%, with consistently high precision, recall, and F1-score across all classes. These findings demonstrate that integrating CNN as a feature extractor and SVM as the final classifier can enhance the model’s generalization capability in distinguishing images of Indonesian traditional houses.

Downloads

Download data is not yet available.

References

[1] F. A. Damastuti et al., “Pengenalan Rumah Adat Nusantara Berbasis Mobile AR di SDN Banjarmendalan Lamongan,” SOROT J. Pengabdi. Kpd. Masy., vol. 2, no. 2, pp. 68–72, 2023, doi: 10.32699/sorot.v2i2.4755.

[2] F. L. Fitri Lintang and F. Ulfatun Najicha, “Nilai-Nilai Sila Persatuan Indonesia Dalam Keberagaman Kebudayaan Indonesia,” J. Glob. Citiz. J. Ilm. Kaji. Pendidik. Kewarganegaraan, vol. 11, no. 1, pp. 79–85, 2022, doi: 10.33061/jgz.v11i1.7469.

[3] T. Abdulghani and B. P. Sati, “Pengenalan Rumah Adat Indonesia Menggunakan Teknologi Augmented Reality Dengan Metode Marker Based Tracking Sebagai Media Pembelajaran,” Media J. Inform., vol. 11, no. 1, p. 43, 2020, doi: 10.35194/mji.v11i1.770.

[4] UNESCO, Basic Texts of the 2003 Convention for the Safeguarding of the Intangible Cultural Heritage, 2024 ed. Paris, France: UNESCO, 2024. [Online]. Available: https://ich.unesco.org/doc/src/2003_Convention_Basic_Texts_2024_version_EN.pdf

[5] D. Machida, Y. Nojima, and C. Kizaki, Eds., Natural Hazards and the Safeguarding of Intangible Cultural Heritage: Experiences from the Asia-Pacific Region. Report of the Research on ICH Safeguarding and Disaster Risk Management (FY 2020–2023). Osaka, Japan: International Research Centre for Intangible Cultural Heritage in the Asia-Pacific Region (IRCI), 2024. [Online]. Available: https://www.irci.jp/wp_files/wp-content/uploads/2024/07/IRCI_Report_Research-on-ICH-Safeguarding-and-DRM-in-the-Asia-Pacific-Region_FY2020-23-1.pdf

[6] Aisya Putri Handayani, Jap Tji Beng, Febynola Tiara Salsabilla, Stefania Morin, Thalia Syahrunia Suci Ardhia, and Valensia Audrey Rusli, “Hilangnya Budaya Lokal di Era Modern dan Upaya Pelestariannya dalam Perspektif Pancasila,” Dewantara J. Pendidik. Sos. Hum., vol. 3, no. 4, pp. 178–188, 2024, doi: 10.30640/dewantara.v3i4.3452.

[7] M. Louis, “Fungsi Dan Makna Ruang Pada Rumah Adat Mbaru Niang Wae Rebo,” Intra, vol. 3, no. 2, pp. 580–585, 2015.

[8] P. A. Octaviani, Yuciana Wilandari, and D. Ispriyanti, “Penerapan Metode Klasifikasi Support Vector Machine (SVM) pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang,” J. Gaussian, vol. 3, no. 8, pp. 811–820, 2014.

[9] I. K. Trisiawan and Y. Yuliza, “Penerapan Multi-Label Image Classification Menggunakan Metode Convolutional Neural Network (CNN) Untuk Sortir Botol Minuman,” J. Teknol. Elektro, vol. 13, no. 1, p. 48, 2022, doi: 10.22441/jte.2022.v13i1.009.

[10] R. A. Firmansah, H. Santoso, and A. Anwar, “Transfer Learning Implementation on Image Recognition of Indonesian Traditional Houses,” J. Tek. Inform., vol. 4, no. 6, pp. 1469–1478, 2023, doi: 10.52436/1.jutif.2023.4.6.767.

[11] A. Agung Mujiono, K. Kartini, and E. Yulia Puspaningrum, “Implementasi Model Hybrid Cnn-Svm Pada Klasifikasi Kondisi Kesegaran Daging Ayam,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 756–763, 2024, doi: 10.36040/jati.v8i1.8855.

[12] Y. Yohannes, D. Udjulawa, and F. Febbiola, “Klasifikasi Lukisan Karya Van Gogh Menggunakan Convolutional Neural Network-Support Vector Machine,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 192–205, 2021, doi: 10.28932/jutisi.v7i1.3399.

[13] R. A. Firmansah, “rumah_adat,” Kaggle. [Online]. Available: https://www.kaggle.com/datasets/rariffirmansah/rumah-adat

[14] G. S. K. Ranjan, A. Kumar Verma, and S. Radhika, “K-Nearest Neighbors and Grid Search CV Based Real Time Fault Monitoring System for Industries,” 2019 IEEE 5th Int. Conf. Converg. Technol. I2CT 2019, vol. 4, no. January, pp. 273–281, 2019, doi: 10.1109/I2CT45611.2019.9033691.

[15] M. Iksan Maulana, M. Martanto, and U. Hayati, “Perbandingan Algoritma Naïve Bayes Dan K-Nearest Neighbors Untuk Klasifikasi Topik Berita Pada Situs Detik.Com,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3733–3742, 2024, doi: 10.36040/jati.v8i3.9779.

[16] F. M. Qotrunnada and P. H. Utomo, “Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker,” Prisma, vol. 5, pp. 799–807, 2022.

[17] A. H. P. Sitohang, T. I. Hermanto, and C. D. Lestari, “Klasifikasi Jenis Penyakit Pada Daun Tumbuhan Stroberi Menggunakan Metode Convolutional Neural Network Arsitektur Inceptionv3,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5274.

Downloads

Published

2025-10-08

How to Cite

[1]
M. Ikhsan and M. Rahardi, “Image-Based Classification of Indonesian Traditional Houses Using a Hybrid CNN-SVM Algorithm”, JAIC, vol. 9, no. 5, pp. 2303–2309, Oct. 2025.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.