Image-Based Classification of Indonesian Traditional Houses Using a Hybrid CNN-SVM Algorithm
DOI:
https://doi.org/10.30871/jaic.v9i5.10864Keywords:
Image Classification, Hybrid Model, CNN-SVM, Traditional House, Machine LearningAbstract
The diversity of Indonesian traditional houses represents a cultural heritage that must be preserved. However, the lack of interest among younger generations and the difficulty in recognizing the distinctive architectural characteristics of traditional houses present challenges to preservation efforts. This study aims to develop an image classification model for Indonesian traditional houses using a hybrid CNN-SVM approach to improve recognition accuracy. The dataset consists of 3,919 images from five classes of traditional houses, namely gadang, joglo, panjang, tongkonan, and honai, with an 80% training split, 10% validation, and 10% testing. The data were processed through resizing, augmentation, and normalization before being trained using a CNN architecture with five convolutional layers as a feature extractor and an SVM serving as a multi-class classifier. The experimental results show that the hybrid CNN-SVM model achieved an accuracy of 96.68%, with consistently high precision, recall, and F1-score across all classes. These findings demonstrate that integrating CNN as a feature extractor and SVM as the final classifier can enhance the model’s generalization capability in distinguishing images of Indonesian traditional houses.
Downloads
References
[1] F. A. Damastuti et al., “Pengenalan Rumah Adat Nusantara Berbasis Mobile AR di SDN Banjarmendalan Lamongan,” SOROT J. Pengabdi. Kpd. Masy., vol. 2, no. 2, pp. 68–72, 2023, doi: 10.32699/sorot.v2i2.4755.
[2] F. L. Fitri Lintang and F. Ulfatun Najicha, “Nilai-Nilai Sila Persatuan Indonesia Dalam Keberagaman Kebudayaan Indonesia,” J. Glob. Citiz. J. Ilm. Kaji. Pendidik. Kewarganegaraan, vol. 11, no. 1, pp. 79–85, 2022, doi: 10.33061/jgz.v11i1.7469.
[3] T. Abdulghani and B. P. Sati, “Pengenalan Rumah Adat Indonesia Menggunakan Teknologi Augmented Reality Dengan Metode Marker Based Tracking Sebagai Media Pembelajaran,” Media J. Inform., vol. 11, no. 1, p. 43, 2020, doi: 10.35194/mji.v11i1.770.
[4] UNESCO, Basic Texts of the 2003 Convention for the Safeguarding of the Intangible Cultural Heritage, 2024 ed. Paris, France: UNESCO, 2024. [Online]. Available: https://ich.unesco.org/doc/src/2003_Convention_Basic_Texts_2024_version_EN.pdf
[5] D. Machida, Y. Nojima, and C. Kizaki, Eds., Natural Hazards and the Safeguarding of Intangible Cultural Heritage: Experiences from the Asia-Pacific Region. Report of the Research on ICH Safeguarding and Disaster Risk Management (FY 2020–2023). Osaka, Japan: International Research Centre for Intangible Cultural Heritage in the Asia-Pacific Region (IRCI), 2024. [Online]. Available: https://www.irci.jp/wp_files/wp-content/uploads/2024/07/IRCI_Report_Research-on-ICH-Safeguarding-and-DRM-in-the-Asia-Pacific-Region_FY2020-23-1.pdf
[6] Aisya Putri Handayani, Jap Tji Beng, Febynola Tiara Salsabilla, Stefania Morin, Thalia Syahrunia Suci Ardhia, and Valensia Audrey Rusli, “Hilangnya Budaya Lokal di Era Modern dan Upaya Pelestariannya dalam Perspektif Pancasila,” Dewantara J. Pendidik. Sos. Hum., vol. 3, no. 4, pp. 178–188, 2024, doi: 10.30640/dewantara.v3i4.3452.
[7] M. Louis, “Fungsi Dan Makna Ruang Pada Rumah Adat Mbaru Niang Wae Rebo,” Intra, vol. 3, no. 2, pp. 580–585, 2015.
[8] P. A. Octaviani, Yuciana Wilandari, and D. Ispriyanti, “Penerapan Metode Klasifikasi Support Vector Machine (SVM) pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang,” J. Gaussian, vol. 3, no. 8, pp. 811–820, 2014.
[9] I. K. Trisiawan and Y. Yuliza, “Penerapan Multi-Label Image Classification Menggunakan Metode Convolutional Neural Network (CNN) Untuk Sortir Botol Minuman,” J. Teknol. Elektro, vol. 13, no. 1, p. 48, 2022, doi: 10.22441/jte.2022.v13i1.009.
[10] R. A. Firmansah, H. Santoso, and A. Anwar, “Transfer Learning Implementation on Image Recognition of Indonesian Traditional Houses,” J. Tek. Inform., vol. 4, no. 6, pp. 1469–1478, 2023, doi: 10.52436/1.jutif.2023.4.6.767.
[11] A. Agung Mujiono, K. Kartini, and E. Yulia Puspaningrum, “Implementasi Model Hybrid Cnn-Svm Pada Klasifikasi Kondisi Kesegaran Daging Ayam,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 756–763, 2024, doi: 10.36040/jati.v8i1.8855.
[12] Y. Yohannes, D. Udjulawa, and F. Febbiola, “Klasifikasi Lukisan Karya Van Gogh Menggunakan Convolutional Neural Network-Support Vector Machine,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 192–205, 2021, doi: 10.28932/jutisi.v7i1.3399.
[13] R. A. Firmansah, “rumah_adat,” Kaggle. [Online]. Available: https://www.kaggle.com/datasets/rariffirmansah/rumah-adat
[14] G. S. K. Ranjan, A. Kumar Verma, and S. Radhika, “K-Nearest Neighbors and Grid Search CV Based Real Time Fault Monitoring System for Industries,” 2019 IEEE 5th Int. Conf. Converg. Technol. I2CT 2019, vol. 4, no. January, pp. 273–281, 2019, doi: 10.1109/I2CT45611.2019.9033691.
[15] M. Iksan Maulana, M. Martanto, and U. Hayati, “Perbandingan Algoritma Naïve Bayes Dan K-Nearest Neighbors Untuk Klasifikasi Topik Berita Pada Situs Detik.Com,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3733–3742, 2024, doi: 10.36040/jati.v8i3.9779.
[16] F. M. Qotrunnada and P. H. Utomo, “Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker,” Prisma, vol. 5, pp. 799–807, 2022.
[17] A. H. P. Sitohang, T. I. Hermanto, and C. D. Lestari, “Klasifikasi Jenis Penyakit Pada Daun Tumbuhan Stroberi Menggunakan Metode Convolutional Neural Network Arsitektur Inceptionv3,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5274.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 M. Ikhsan, Majid Rahardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








