Sentiment Analysis of Youtube and Gotube Reviews on Google Play Using the Support Vector Machine (SVM) Method in Indonesia
DOI:
https://doi.org/10.30871/jaic.v9i3.9461Keywords:
Sentiment Analysis, Support Vector Machine (SVM), Google Play Reviews, Youtube, GotubeAbstract
This research, titled Sentiment Analysis of YouTube and GoTube Reviews on Google Play Using the Support Vector Machine (SVM) Method in Indonesia, analyzes user perceptions of YouTube and GoTube based on Google Play reviews. The study is motivated by the growing popularity of video streaming apps in Indonesia and the limited sentiment analysis research on these platforms. The research collects 1,600 reviews (800 per app) from 2023-2024 using Python’s Scrapy library. The data is split 70% for training and 30% for testing, undergoing text preprocessing (tokenization, stop word removal, stemming), TF-IDF weighting, and SVM classification with an RBF kernel. Evaluation metrics include accuracy, precision, recall, and F1-score, with PCA used for visualization. Results show 94.50% accuracy overall, 97.01% for YouTube, and 92.66% for GoTube. GoTube has higher positive sentiment (385 of 400 test reviews) than YouTube (345 of 400) but lower negative sentiment (15 vs. 55). However, the model exhibits a positive class bias due to data imbalance. The study concludes that SVM effectively detects positive sentiment, but balancing data and exploring non-linear methods could improve negative sentiment detection.
Downloads
References
[1] D. F. Zhafira, B. Rahayudi, and I. Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” Jurnal Sistem Informasi, Teknologi Informasi, dan Edukasi Sistem Informasi,vol. 2, no. 1, pp. 55–63, Aug. 2021, doi: 10.25126/justsi.v2i1.24.
[2] J. R. P. A. Yudha and S. Sundari, “Manfaat Media Pembelajaran YouTube terhadap Capaian Kompetensi Mahasiswa,” Journal of Telenursing (JOTING), vol. 3, no. 2, pp. 538–545, Oct. 2021, doi:10.31539/joting.v3i2.2561.
[3] V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, and Ahmad Hanif Asyhar, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” Jurnal Buana Informatika, vol. 14, no. 01, pp. 40–49, Apr. 2023, doi: 10.24002/jbi.v14i01.6909.
[4] L. Agustina, A. O. Fayardi, and I. Irwansyah, “Online Review Indikator Penilaian Kredibilitas Online dalam Platform E-commerce,” Jurnal ILMU KOMUNIKASI, vol. 15, no. 2, pp. 141–154, Nov.2018, doi: 10.24002/jik.v15i2.1320.
[5] R. Rosita and D. Evalin, “Pengaruh Kualitas Konten Tik Tok Terhadap Customer Engagement Pada Customer Queensha,” Jurnal Lentera Bisnis, vol. 13, no. 2, pp. 1061–1071, May 2024, doi: 10.34127/jrlab.v13i2.1129.
[6] D. Mualfah, Ramadhoni, R. Gunawan, and D. Mulyadipa Suratno, “Analisis Sentimen Komentar YouTube TvOne Tentang Ustadz Abdul Somad Dideportasi Dari Singapura Menggunakan Algoritma SVM,” JURNAL FASILKOM, vol. 13, no. 01, pp. 72–80, Jul. 2023, doi: 10.37859/jf.v13i01.4920.
[7] M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS: Journal of Information Technology and Computer Science, vol. 5, no. 1, pp. 1–7, Apr. 2022, doi: 10.31539/intecoms.v5i1.3708.
[8] A. Z. Amrullah, A. Sofyan Anas, M. Adrian, and J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal BITe, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
[9] A. N. Indraini and I. Ernawati, “Analisis Sentimen Terhadap Pembelajaran Daring Di Indonesia Menggunakan Support Vector Machine (SVM),” Jurnal Ilmiah FIFO, vol. 14, no. 1, pp. 68–80, Jul. 2022, doi: 10.22441/fifo.2022.v14i1.007.
[10] A. Deolika and E. Taufiq Luthfi, “Analisis Pembobotan Kata Pada Klasifikasi Text Mining,” Jurnal Teknologi Informasi, vol. 3, no. 2, 2019.
[11] T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 4, pp. 3436–3442, Dec. 2022, doi: 10.35957/jatisi.v9i4.3586.
[12] N. Aula, M. Ula, and L. Rosnita, “Analisis Sentimen Review Customer Terhadap Perusahaan Ekspedisi Jne, J&Amp;T Express Dan Pos Indonesia Menggunakan Metode Support Vector Machine (Svm),” Journal Of Informatics And Computer Science, vol. 9, no. 1, pp. 81–86, Apr. 2023, doi: 10.33143/jics.v9i1.2947.
[13] S. B. Setiawan and R. Isnain, “Jurnal Media Informatika Budidarma Sentimen Analisis Masyarakat Terhadap Pembangunan IKN Menggunakan Algoritma Lexicon Based Approach dan Naïve Bayes,” Jurnal Media Informatika
[14] N. Aula, M. Ula, and L. Rosnita, “Analisis Sentimen Review Customer Terhadap Perusahaan Ekspedisi Jne, J&Amp;T Express Dan Pos Indonesia Menggunakan Metode Support Vector Machine (Svm),” Journal Of Informatics And Computer Science, vol. 9, no. 1, pp. 81–86, Apr. 2023, doi: 10.33143/jics.v9i1.2947.
[15] S. B. Setiawan and R. Isnain, “Jurnal Media Informatika Budidarma Sentimen Analisis Masyarakat Terhadap Pembangunan IKN Menggunakan Algoritma Lexicon Based Approach dan Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 8, no. 2, pp. 1019–1030, 2024, doi: 10.30865/mib.v8i2.7605.
[16] H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (SVM),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, pp. 994–1002, Apr. 2024, doi: 10.23960/jitet.v12i2.4095.
[17] D. Untuk, M. Persyaratan, M. Gelar, S. Komputer, D. Oleh, and A. Fatihin, “Analisis Sentimen Terhadap Ulasan Aplikasi Mobile Menggunakan Metode Support Vector Machine (Svm) Dan Pendekatan Lexicon Based.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sri Raihan Putri, Asrianda Asrianda, Lidya Rosnita

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








