Development of AI-Based Public Safety System with Face Recognition Using CNN and SVM Models in Real-Time
DOI:
https://doi.org/10.30871/jaic.v9i3.9524Keywords:
Artificial Intelligence, CNN, SVM, Gender Identification, Sexual CrimesAbstract
Sexual crimes are an increasing problem, with many cases difficult to identify due to the limitations of existing surveillance systems. This study aims to develop an Artificial Intelligence (AI)-based system using Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for gender identification in order to support sexual crime investigations. The methods used include processing facial image datasets, training models using CNN for feature extraction, and SVM for gender classification. The results showed that the CNN model achieved an accuracy of 90.15%, while the SVM model only achieved an accuracy of 82.16%. Further evaluation with a confusion matrix showed that CNN was more accurate in classifying gender than SVM. With these results, the developed system has the potential to help authorities identify perpetrators of sexual crimes more quickly and accurately. The dataset used consists of 23,706 grayscale facial images of 48x48 pixels, with a balanced distribution of male and female samples. The CNN architecture includes three convolutional blocks and achieves 90.15% accuracy. Although designed for real-time operation, inference speed needs further validation using FPS or latency metrics on specific hardware platforms.
Downloads
References
[1] S. Azzahra, L. Agustino, and S. Rahayu, “Pencegahan serta Penanganan Kekerasan Seksual pada Universitas Sultan Ageng Tirtayasa dalam Lingkup Implementasi Kebijakan,” 2024. doi: https://doi.org/10.57266/epistemik.v5i2.342.
[2] P. Adi Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” JURNAL ALGOR, vol. 2, no. 1, 2020,
[Online]. Available:
https://jurnal.buddhidharma.ac.id/index.php/algor/in dex
[3] S. Suwarno, A. W. Mahastama, and P. Korespondensi, “Estimasi Gender Berbasis Sidik Jari dengan Wavelet dan Support Vector Machines,” 2021, doi: 10.25126/jtiik.2024117972.
[4] F. S. H. H. Cahyana Yana, “Aanalyze Multiple Choice Items Using PHP Programming Languange (Case Study: SMAN 1 Klari Karawang),” 2020, doi: 10.37200/IJPR/V24I7/PR270390.
[5] I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 296, Dec. 2022, doi: 10.30865/json.v4i2.5381.
[6] Nurdin, “Memahami Isu Gender dan Ketidaksetaraan Gender di Indonesia Pasca Era Reformasi: Perspektif Pembangunan Article Info,” 2024, doi: 10.55681/jige.v5i1.xxx.
[7] T. Rohana, E. Nurlaelasari, E. E. Awal, and H. Y. Novita, “Kajian Model Jaringan Syaraf Tiruan Untuk Memprediksi Secara Dini Tingkat Kelulusan Mahasiswa,” Technologia: Jurnal Ilmiah, vol. 15,
no. 4, p. 629, Oct. 2024, doi: 10.31602/tji.v15i4.15583.
[8] M. Yudha et al., “Indonesian Journal Of LAW and Shariah Perlindungan Hukum Bagi Korban Penggunaan Deepfake dalam Kejahatan Pornografi,” vol. 2, no. 1, 2025, doi: https://doi.org/10.54622/ijsl.v2i1.371.
[9] Risky Febriawan, “Klasifikasi Gender Pada Citra Wajah Menggunakan Convolutional Neural Network dan Transfer Learning,” 2022. Accessed: Apr. 17, 2025. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456 789/65579
[10] Tukino, R. A. Nanda, Gunawan, S. Wijono, S. Y. J. Prasetyo, and S. Trihandaru, “AnalysisTransfer Data Image Processing and Face Recognition Using Camera ESP32CAM WEB Browser IOT,” ICIC Express Letters, vol. 17, no. 6, pp. 717–724, Jun.
2023, doi: 10.24507/icicel.17.06.717.
[11] A. ANHAR and R. A. PUTRA, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 2, p. 466, Apr. 2023, doi:
10.26760/elkomika.v11i2.466.
[12] K. A. Baihaqi, C. Zonyfar, and B. Nugraha, “Pengenalan Jenis Candi Berdasarkan Bentuk dan Modelnya Menggunakan Menggunakan Motode Convolutional Neural Network (CNN) Pada YOLLO v3,” 2021. doi: https://doi.org/10.35706/syji.v10i02.5665.
[13] N. Pratiwi and Y. Setyawan, “Analisis Akurasi dari Perbedaan Fungsi Kernel dan Cost Pada Support Vector Machine Studi Kasus Klasifikasi Curah Hujan di Jakarta,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 4, no. 2, pp. 203–212, Nov. 2021, doi: 10.14710/jfma.v4i2.11691.
[14] M. A. Khair, P. Aldiyuda, N. E. Pakpahan, M. Z. Zukhrufa, and M. Adrezo, “Perancangan Sistem Absensi Mahasiswa Berbasis Face Recognition di Lingkungan UPN Veteran Jakarta,” 2024, doi: https://doi.org/10.52958/iftk.v20i1.6696.
[15] B. T. Utomo, I. Fitri, and E. Mardiani, “Penerapan Face Recognition Pada Aplikasi Akademik Online”, doi: https://doi.org/10.52958/iftk.v16i3.2259.
[16] T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap BTS Menggunakan Algoritma Support Vector Machine,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Naila Ratu Alifa, Yana Cahyana, Rahmat Rahmat, Sutan Faisal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








