Development of AI-Based Public Safety System with Face Recognition Using CNN and SVM Models in Real-Time

Authors

  • Naila Ratu Alifa Universitas Buana Perjuangan Karawang
  • Yana Cahyana Universitas Buana Perjuangan Karawang
  • Rahmat Rahmat Universitas Buana Perjuangan Karawang
  • Sutan Faisal Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.30871/jaic.v9i3.9524

Keywords:

Artificial Intelligence, CNN, SVM, Gender Identification, Sexual Crimes

Abstract

Sexual crimes are an increasing problem, with many cases difficult to identify due to the limitations of existing surveillance systems. This study aims to develop an Artificial Intelligence (AI)-based system using Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for gender identification in order to support sexual crime investigations. The methods used include processing facial image datasets, training models using CNN for feature extraction, and SVM for gender classification. The results showed that the CNN model achieved an accuracy of 90.15%, while the SVM model only achieved an accuracy of 82.16%. Further evaluation with a confusion matrix showed that CNN was more accurate in classifying gender than SVM. With these results, the developed system has the potential to help authorities identify perpetrators of sexual crimes more quickly and accurately. The dataset used consists of 23,706 grayscale facial images of 48x48 pixels, with a balanced distribution of male and female samples. The CNN architecture includes three convolutional blocks and achieves 90.15% accuracy. Although designed for real-time operation, inference speed needs further validation using FPS or latency metrics on specific hardware platforms.

Downloads

Download data is not yet available.

References

[1] S. Azzahra, L. Agustino, and S. Rahayu, “Pencegahan serta Penanganan Kekerasan Seksual pada Universitas Sultan Ageng Tirtayasa dalam Lingkup Implementasi Kebijakan,” 2024. doi: https://doi.org/10.57266/epistemik.v5i2.342.

[2] P. Adi Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia,” JURNAL ALGOR, vol. 2, no. 1, 2020,

[Online]. Available:

https://jurnal.buddhidharma.ac.id/index.php/algor/in dex

[3] S. Suwarno, A. W. Mahastama, and P. Korespondensi, “Estimasi Gender Berbasis Sidik Jari dengan Wavelet dan Support Vector Machines,” 2021, doi: 10.25126/jtiik.2024117972.

[4] F. S. H. H. Cahyana Yana, “Aanalyze Multiple Choice Items Using PHP Programming Languange (Case Study: SMAN 1 Klari Karawang),” 2020, doi: 10.37200/IJPR/V24I7/PR270390.

[5] I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 296, Dec. 2022, doi: 10.30865/json.v4i2.5381.

[6] Nurdin, “Memahami Isu Gender dan Ketidaksetaraan Gender di Indonesia Pasca Era Reformasi: Perspektif Pembangunan Article Info,” 2024, doi: 10.55681/jige.v5i1.xxx.

[7] T. Rohana, E. Nurlaelasari, E. E. Awal, and H. Y. Novita, “Kajian Model Jaringan Syaraf Tiruan Untuk Memprediksi Secara Dini Tingkat Kelulusan Mahasiswa,” Technologia: Jurnal Ilmiah, vol. 15,

no. 4, p. 629, Oct. 2024, doi: 10.31602/tji.v15i4.15583.

[8] M. Yudha et al., “Indonesian Journal Of LAW and Shariah Perlindungan Hukum Bagi Korban Penggunaan Deepfake dalam Kejahatan Pornografi,” vol. 2, no. 1, 2025, doi: https://doi.org/10.54622/ijsl.v2i1.371.

[9] Risky Febriawan, “Klasifikasi Gender Pada Citra Wajah Menggunakan Convolutional Neural Network dan Transfer Learning,” 2022. Accessed: Apr. 17, 2025. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456 789/65579

[10] Tukino, R. A. Nanda, Gunawan, S. Wijono, S. Y. J. Prasetyo, and S. Trihandaru, “AnalysisTransfer Data Image Processing and Face Recognition Using Camera ESP32CAM WEB Browser IOT,” ICIC Express Letters, vol. 17, no. 6, pp. 717–724, Jun.

2023, doi: 10.24507/icicel.17.06.717.

[11] A. ANHAR and R. A. PUTRA, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 11, no. 2, p. 466, Apr. 2023, doi:

10.26760/elkomika.v11i2.466.

[12] K. A. Baihaqi, C. Zonyfar, and B. Nugraha, “Pengenalan Jenis Candi Berdasarkan Bentuk dan Modelnya Menggunakan Menggunakan Motode Convolutional Neural Network (CNN) Pada YOLLO v3,” 2021. doi: https://doi.org/10.35706/syji.v10i02.5665.

[13] N. Pratiwi and Y. Setyawan, “Analisis Akurasi dari Perbedaan Fungsi Kernel dan Cost Pada Support Vector Machine Studi Kasus Klasifikasi Curah Hujan di Jakarta,” Journal of Fundamental Mathematics and Applications (JFMA), vol. 4, no. 2, pp. 203–212, Nov. 2021, doi: 10.14710/jfma.v4i2.11691.

[14] M. A. Khair, P. Aldiyuda, N. E. Pakpahan, M. Z. Zukhrufa, and M. Adrezo, “Perancangan Sistem Absensi Mahasiswa Berbasis Face Recognition di Lingkungan UPN Veteran Jakarta,” 2024, doi: https://doi.org/10.52958/iftk.v20i1.6696.

[15] B. T. Utomo, I. Fitri, and E. Mardiani, “Penerapan Face Recognition Pada Aplikasi Akademik Online”, doi: https://doi.org/10.52958/iftk.v16i3.2259.

[16] T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap BTS Menggunakan Algoritma Support Vector Machine,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

Downloads

Published

2025-06-27

How to Cite

[1]
N. R. Alifa, Yana Cahyana, R. Rahmat, and Sutan Faisal, “Development of AI-Based Public Safety System with Face Recognition Using CNN and SVM Models in Real-Time”, JAIC, vol. 9, no. 3, pp. 1066–1073, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.