Sentiment Analysis on the Relocation of the National Capital (IKN) on Social Media X Using Naive Bayes and K-Nearest Neighbor (KNN) Methods

Authors

  • Nova Wulandari Universitas Buana Perjuangan Karawang
  • Yana Cahyana Universitas Buana Perjuangan Karawang
  • Rahmat Rahmat Universitas Buana Perjuangan Karawang
  • Hanny Hikmayanti Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.30871/jaic.v9i3.9552

Keywords:

Ibu Kota Negara (IKN), K-Nearest Neighbor, Naïve Bayes, Sentiment Analysis, Social Media X

Abstract

This study investigates public sentiment toward the relocation of Indonesia’s capital from Jakarta to East Kalimantan, focusing on reactions from social media platforms such as X (formerly Twitter). Understanding these sentiments is crucial for the government to gauge support for this significant policy shift. The study compares the performance of two classification algorithms, Naïve Bayes and K-Nearest Neighbor (K-NN), in sentiment analysis. A total of 1.277 comments were collected using the tweet-harvest library through a crawling process. The data underwent preprocessing, including cleaning, case folding, normalization, stopword removal, tokenization, and stemming. Sentiment labels were assigned through both manual and automated methods, while feature extraction was performed using the TF-IDF technique. The algorithms' performance was assessed using accuracy, precision, recall, and F1-score metrics. The results revealed that Naïve Bayes outperformed K-NN, with an accuracy of 70%, precision of 72%, recall of 70%, and an F1-score of 69%. In contrast, K-NN achieved an accuracy of 60%, precision of 62%, recall of 60%, and an F1-score of 59%. These results suggest that Naïve Bayes is more effective in classifying sentiment related to the capital relocation. The findings offer valuable insights for policymakers and highlight the potential of automated sentiment analysis as a tool for monitoring public opinion on major governmental policies.

Downloads

Download data is not yet available.

References

[1] S. Lestari et al., “Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter,” vol. 8, no. 1, pp. 13–22, doi: https://doi.org/10.19109/jusifo.v8i1.12116.

[2] C. Huda and M. Betty Yel, “Analisa Sentimen Tentang Ibu Kota Nusantara (IKN) Dengan Menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naïve Bayes,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI V, vol. 7, no. 1, pp. 126–130, 2024, doi: https://doi.org/10.55338/jikomsi.v7i1.2846.

[3] S. I. R. Adi, B. Bakkara, K. A. Zega, F. N. Vielita, and N. A. Rakhmawati, “Analisis Sentimen Masyarakat Terhadap Progress Ikn Menggunakan Model Decision Tree,” JIKA (Jurnal Informatika), vol. 8, no. 1, p. 57, Jan. 2024, doi: 10.31000/jika.v8i1.9803.

[4] A. M. Pravina, K. N. Sani, H. D. Harfianto, T. A. Pratama, A. Fahrina, and Y. Ruldeviyani, “Sentiment Analysis Of Delivery Service Opinions On Twitter Documents Using K-Nearest Neighbor Arsya, et., al [Sentiment Analysis Of Delivery Service Opinions On Twitter Documents Using K-Nearest Neighbor],” Hal; Jl. Salemba Raya, vol. 9, no. 2, pp. 996–1012, 2022, [Online]. Available: http://jurnal.mdp.ac.id

[5] H. Wisnu, M. Afif, and Y. Ruldevyani, “Sentiment analysis on customer satisfaction of digital payment in Indonesia: A comparative study using KNN and Naïve Bayes,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Feb. 2020. doi: 10.1088/1742-6596/1444/1/012034.

[6] M. Fikri Haikal and J. Indra, “Analisis Sentimen Bakal Calon Presiden Indonesia 2024 Dengan Algoritma Naïve Bayes”.

[7] Y. Khoiruddin, A. Fauzi, and A. M. Siregar, “Analisis Sentimen Gojek Indonesia Pada Twitter Menggunakan Algoritme Naïve Bayes Dan Support Vector Machine”.

[8] R. Saputra and F. N. Hasan, “Analisis Sentimen Terhadap Program Makan Siang & Susu Gratis Menggunakan Algoritma Naive Bayes,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 3, pp. 411–419, Jul. 2024, doi: 10.47233/jteksis.v6i3.1378.

[9] A. J. Arifin and A. Nugroho, “Uji Akurasi Penggunaan Metode KNN dalam Analisis Sentimen Kenaikan Harga BBM pada Media Twitter”, doi: http://dx.doi.org/10.35889/progresif.v19i2.1288.

[10] T. Cahya Herdiyani and A. U. Zailani, “Sentiment Analysis Terkait Pemindahan Ibu Kota Indonesia Menggunakan Metode Random Forest Berdasarkan Tweet Warga Negara Indonesia Sentiment Analysis Related to Transportation of Indonesian Capital City Using Random Forest Method Based On Tweet Of Indonesian Citizens,” 2022.

[11] Tania Puspa Rahayu Sanjaya, Ahmad Fauzi, and Anis Fitri Nur Masruriyah, “Analisis sentimen ulasan pada e-commerce shopee menggunakan algoritma naive bayes dan support vector machine,” INFOTECH : Jurnal Informatika & Teknologi, vol. 4, no. 1, pp. 16–26, Jun. 2023, doi: 10.37373/infotech.v4i1.422.

[12] Y. Cahyana and A. M. Siregar, “Analisis Sentiment Pembelajaran Tatap Muka Terbatas (PTMT) Selama Pandemik Covid-19 Menggunakan Algoritma Naïve Bayes.” doi: https://doi.org/10.33322/petir.v16i2.1964.

[13] “2191-Article Text-6789-1-10-20230205”.

[14] A. Azhar, S. U. Masruroh, L. K. Wardhani, and O. Okfalisa, “Performance comparison of the Naive Bayes algorithm and the k-NN lexicon approach on Twitter media sentiment analysis,” Science, Technology and Communication Journal, vol. 3, no. 2, pp. 33–38, Feb. 2023, doi: 10.59190/stc.v3i2.229.

[15] Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS : Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, Jul. 2023, doi: https://doi.org/10.37373/tekno.v10i2.419.

[16] C. Atika Sari and E. Hari Rachmawanto, “Sentiment Analyst on Twitter Using the K-Nearest Neighbors (KNN) Algorithm Against Covid-19 Vaccination,” 2022.

[17] M. Padhy, U. M. Modibbo, R. Rautray, S. S. Tripathy, and S. Bebortta, “Application of Machine Learning Techniques to Classify Twitter Sentiments Using Vectorization Techniques,” Aug. 20, 2024. doi: 10.20944/preprints202408.1395.v1.

Downloads

Published

2025-06-04

How to Cite

[1]
N. Wulandari, Y. Cahyana, R. Rahmat, and H. Hikmayanti, “Sentiment Analysis on the Relocation of the National Capital (IKN) on Social Media X Using Naive Bayes and K-Nearest Neighbor (KNN) Methods”, JAIC, vol. 9, no. 3, pp. 724–731, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.