Mapping the Polarity of Tourist Opinions on Indonesian Destinations through Google Maps Reviews Using Supervised Learning Methods
DOI:
https://doi.org/10.30871/jaic.v9i5.9836Keywords:
Tourist Opinion Polarity, Google Maps Reviews, Indonesian Tourist Destinations, Supervised Learning, Sentiment Classification, Text Mining, Natural Language ProcessingAbstract
The advancement of information technology has transformed how individuals seek information and plan their travels, notably through online reviews of tourist attractions on platforms like Google Maps. However, these reviews do not always align with visitors' expectations, necessitating further analysis to comprehend the underlying sentiments. The objective of this research is to inspect the performance of multiple machine learning algorithms in executing sentiment analysis on user generated reviews related to tourist attractions in Indonesia. The algorithms examined include Multinomial Naïve Bayes, Random Forest Classifier, Logistic Regression, Support Vector Machine, K-Nearest Neighbors, and Extra Trees Classifier. The research process encompasses data collection and labeling, data preprocessing, exploratory data analysis (EDA), Word Cloud visualization, feature extraction, classification implementation, and performance evaluation. Experimental results indicate that the K-Nearest Neighbors (KNN) algorithm attain the most accuracy and F1-score of 97%, indicating its effectiveness in categorizing text-based sentiment reviews sourced from the Google Maps platform.
Downloads
References
[1] E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” J. Eksplora Inform., vol. 10, no. 1, pp. 32–42, Sep. 2020, doi: 10.30864/eksplora.v10i1.390.
[2] K. Ilmiyah and I. Krishernawan, “PENGARUH ULASAN PRODUK, KEMUDAHAN, KEPERCAYAAN, DAN HARGA TERHADAP KEPUTUSAN PEMBELIAN PADA MARKETPLACE SHOPEE DI MOJOKERTO,” Mak. J. Manaj., vol. 6, no. 1, pp. 31–42, Jun. 2020, doi: 10.37403/mjm.v6i1.143.
[3] M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif. Intell. Rev., vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.
[4] E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades, “Ontology-based sentiment analysis of twitter posts,” Expert Syst. Appl., vol. 40, no. 10, pp. 4065–4074, Aug. 2013, doi: 10.1016/j.eswa.2013.01.001.
[5] F. F. Irfani, “ANALISIS SENTIMEN REVIEW APLIKASI RUANGGURU MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, pp. 258–266, Feb. 2020, doi: 10.26487/jbmi.v16i3.8607.
[6] D. Efriadi, R. Rahmaddeni, A. Agustin, and J. Junadhi, “Prediksi Penambahan Piutang Iuran Jaminan Sosial Ketenagakerjaan menggunakan Algoritma K-Nearest Neighbor,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 49–57, Jun. 2022, doi: 10.29408/edumatic.v6i1.5255.
[7] P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1020, Aug. 2022, doi: 10.30865/jurikom.v9i4.4673.
[8] M. F. A. dan K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” e-Proceeding Eng., vol. Volume 7, pp. 9936–9948, 2020.
[9] D. Agustina dan F. Rahmah, “Analisis Sentimen pada Sosial Media Twitter terhadap MRT Jakarta Menggunakan Machine Learning,” Insearch Inf. Syst. Res. J., vol. Volume 2, 2022.
[10] A. I. Tanggraeni dan M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes,” vol. Volume 9, pp. 785–795, 2022.
[11] N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 123–131, Feb. 2021, doi: 10.29207/resti.v5i1.2587.
[12] dan A. N. S. Budiman, A. Sunyoto, “Analisa Performa Penggunaan Feature Selection untuk Mendeteksi Intrusion Detection Systems dengan Algoritma Random Forest Classifier,” Sist. J. Sist. Inf., vol. Vol. 10, N, pp. 752–760, 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id
[13] dan R. A. F. Fazrin, O. Nurul Pratiwi, “Perbandingan Algoritma K-Nearest Neighbor dan Logistic Regression pada Analisis Sentimen terhadap Vaksinasi Covid-19 pada Media Sosial Twitter dengan Pelabelan Vader dan Textblob,” in e-Proceeding of Engineering, 2023, pp. 1596–1604. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19960
[14] M. F. Asshiddiqi dan K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” in e-Proceeding of Engineering, 2020, pp. 9936–9948.
[15] dan A. S. A. S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, S. Khomsah, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa Indonesia,” vol. Vol. 1, No, pp. 648–654, 2017.
[16] R. Tuntun, K. Kusrini, and K. Kusnawi, “Analisis Perbandingan Kinerja Algoritma Klasifikasi dengan Menggunakan Metode K-Fold Cross Validation,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 4, p. 2111, Oct. 2022, doi: 10.30865/mib.v6i4.4681.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siti Miftahus Sa’adah, Khothibul Umam, Maya Rini Handayani, Mokhammad Iklil Mustofa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








