Comparative Study of SVM and Decision Tree Algorithms on the Effect of SMOTE Technique on LinkAja Application
DOI:
https://doi.org/10.30871/jaic.v9i6.9806Keywords:
Decision Tree, LinkAja, Sentiment Analysis, SMOTE, Support Vector MachineAbstract
The widespread adoption of digital wallets like LinkAja in Indonesia has led to a surge in user-generated reviews, which are valuable for assessing service quality. This study compares the classification performance of Support Vector Machine (SVM) and Decision Tree algorithms on user reviews from the LinkAja application. 7.000 reviews were gathered through web scraping and processed with standard text cleaning, tokenization, stopword removal, and stemming, resulting in 6,261 usable entries. These were divided into training and testing sets in a 70:30 ratio. The performance of each algorithm was evaluated both before and after the application of Synthetic Minority Oversampling Technique (SMOTE) to address class imbalance. Prior to SMOTE, SVM recorded an accuracy of 77.97%, precision of 0.74, recall of 0.33, and F1 score of 0.45, while Decision Tree reached 72.01% accuracy, 0.50 precision, 0.62 recall, and 0.55 F1 score. After SMOTE, SVM accuracy slightly improved to 78.29%, with notable increases in recall (0.74) and F1 score (0.60); Decision Tree also saw an accuracy rise to 74.56% but experienced a slight decline in F1 score to 0.52. These findings demonstrate that SVM, particularly when used with SMOTE, offers better overall performance and class balance in classifying reviews with imbalanced sentiment distribution, making it more suitable than Decision Tree for this application.
Downloads
References
[1] M. Ma’rufudin and A. Yudhistira, “Analisis Sentimen Petani Milenial Pada Media Sosial X Menggunakan Algortitma Support Vector Machine (SVM),” J. Pendidik. dan Teknol. Indones., vol. 5, no. 3, pp. 845–857, 2025, doi: 10.52436/1.jpti.717.
[2] I. Diah Hardyatman and F. Noor Hasan, “Analisis Sentimen Masyarakat Terhadap Rencana Kenaikan PPN 12% Di Indonesia Pada Media Sosial X Menggunakan Metode Decision Tree,” J. Inf. Syst. Res., vol. 6, no. 2, pp. 1126–1134, 2025, doi: 10.47065/josh.v6i2.6573.
[3] V. No, I. K. Najibulloh, D. Intan, and S. Saputra, “Edumatic : Jurnal Pendidikan Informatika Analisis Sentimen Ulasan Co-Pilot Google Play dengan SVM , Neural Network , dan Decision Tree,” vol. 9, no. 1, pp. 275–283, 2025, doi: 10.29408/edumatic.v9i1.29673.
[4] Y. A. Singgalen, “KLIK: Kajian Ilmiah Informatika dan Komputer Implementation of SVM and DT for Sentiment Classification: Tempel Hamlet Content Reviews,” Media Online, vol. 4, no. 5, pp. 2571–2579, 2024, doi: 10.30865/klik.v4i5.1826.
[5] K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.24076/joism.2021v3i1.341.
[6] F. Panjaitan, W. Ce, H. Oktafiandi, G. Kanugrahan, Y. Ramdhani, and V. H. C. Putra, “Evaluation of Machine Learning Models for Sentiment Analysis in the South Sumatra Governor Election Using Data Balancing Techniques,” J. Inf. Syst. Informatics, vol. 7, no. 1, pp. 461–478, 2025, doi: 10.51519/journalisi.v7i1.1019.
[7] K. Ahmad, “Analisis Sentimen Pinjaman Online Akulaku dan Kredivo dengan metode Support Vector Machine (SVM),” J. Mandalika Lit., vol. 4, no. 4, pp. 323–332, 2023, doi: 10.36312/jml.v4i4.2045.
[8] M. Hasanudin, S. Dwiasnati, and W. Gunawan, “Pelatihan Datascience pada Pra-Pemrosesan Data untuk Siswa SMK Media Informatika - Jakarta,” J. Pengabdi. Pada Masy., vol. 9, no. 4, pp. 882–888, 2024, doi: 10.30653/jppm.v9i4.921.
[9] H. Firda et al., “Perbandingan Pelabelan Rating - based dan Inset Lexicon - based dalam Analisis Sentimen Menggunakan SVM ( Studi Kasus : Ulasan Aplikasi GoBiz di Google Play Store ) Comparison of Rating - based and Inset Lexicon - based Labeling in Sentiment Analysis usin,” vol. 14, pp. 516–528, 2025.
[10] D. Haliza and M. Ikhsan, “Sentiment Analysis on Public Perception of the Nusantara Capital on Social Media X Using Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) Methods,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 716–723, 2025, doi: 10.30871/jaic.v9i3.9318.
[11] M. G. R. Lubis, D. S. Sitompul, T. M. Giovanni, F. Ramadhani, and S. Dewi, “Evaluasi Kinerja Algoritma Support Vector Machine (SVM) Dalam Analisis Sentimen Publik Terhadap Naturalisasi Timnas Indonesia di Twitter,” J. Account. Law Commun. Technol., vol. 2, no. 1, pp. 81–89, 2024, doi: 10.57235/jalakotek.v2i1.4180.
[12] I. L. Kharisma, D. A. Septiani, A. Fergina, and K. Kamdan, “Penerapan Algoritma Decision Tree untuk Ulasan Aplikasi Vidio di Google Play,” J. Nas. Teknol. dan Sist. Inf., vol. 9, no. 2, pp. 218–226, 2023, doi: 10.25077/teknosi.v9i2.2023.218-226.
[13] R. Pohan, D. Ratnawati, and I. Arwani, “Implementasi Algoritma Support Vector Machine dan Model Bag-of-Words dalam Analisis Sentimen mengenai PILKADA 2020 pada Pengguna Twitter,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 10, pp. 4924–4931, 2022, [Online]. Available: http://j-ptiik.ub.ac.id
[14] Y. Nuri and E. Senyurek, “Research Abstracts Similarity Implementation By Using TF-IDF Algorithm,” vol. 27, no. 1, pp. 4–10, 2025, doi: 10.9790/0661-2701040410.
[15] S. Christianto and J. Amanda Ginting, “Social Network Analysis Peringatan Darurat Ruu Pemilihan Kepala Daerah,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 5366–5373, 2025, doi: 10.36040/jati.v9i3.13676.
[16] W. Rahayu et al., “Synthetic Minority Oversampling Technique (SMOTE) for Boosting the Accuracy of C4.5 Algorithm Model,” J. Artif. Intell. Eng. Appl., vol. 3, no. 3, pp. 624–630, 2024, doi: 10.59934/jaiea.v3i3.469.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Kholfan Faruq, Khothibul Umam, Mokhamad Iklil Mustofa, Adzhal Arwani Mahfudh

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








