Sentiment Analysis customer Towards Cinema Services in Semarang Using Naive Bayes Classifier on Google Reviews

Authors

  • Husni Brian Maualan Universitas Islam Negeri Walisongo
  • Maya Rini Handayani Universitas Islam Negeri Walisongo
  • Khotibul Umam Universitas Islam Negeri Walisongo

DOI:

https://doi.org/10.30871/jaic.v9i5.10974

Keywords:

Sentiment, Naive Bayes Classifier, Google Reviews, Cinema, Semarang

Abstract

The development of the entertainment industry, especially in the field of cinema, encourages every service provider to continuously maintain the quality of their services. One method of assessing customer satisfaction is through sentiment testing. The main objective of this study is to examine customer sentiment towards cinema services in Semarang by applying the Naive Bayes Classifier method. The research data was taken from 600 customer reviews on Google Review, which were then divided into two groups: training data consisting of 480 reviews (80%) and testing data consisting of 120 reviews (20%). Before the classification process, the data underwent pre-processing stages involving data cleaning, case folding, tokenization, stopword removal, and stemming, followed by data labeling into two sentiment categories, namely positive and negative. This study took five cinemas as objects, namely CitraXXI, Cinépolis Java Mall, Paragon XXI, XXI Uptown Mall, and XXI DP Mall. The classification results show that the Naive Bayes algorithm is able to group sentiments quite well, with model accuracy ranging from 0.90 to 0.94. Of the five cinemas, Cinépolis Java Mall achieved the highest accuracy, which was 0.94.

Downloads

Download data is not yet available.

References

[1] Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.

[2] R. S. Mallar and Y. Tanjung, “Pengaruh Harga , Lokasi dan Kualitas Pelayanan Terhadap Kepuasan Pelanggan pada Bioskop Cinepolis Plaza Medan Fair Salah satu Bioskop di Indonesia yaitu Cinepolis sebelumnya Bioskop Cinepolis beroperasi dengan nama Cinemaxx ( dibawah nama PT Cinemaxx Glob,” J. Manaj. Bisnis Kewirausahaan, vol. 2, no. 3, 2023, [Online]. Available: https://jurnal-stiepari.ac.id/index.php/jumbiwira/article/view/1094

[3] E. G. Maulana, L. P. Martha, and I. T. Kusumaninngtias, “Analisis Strategi Komunikasi Pemasaran Terpadu Bioskop Platinum Cineplex Cibinong Square dalam Menarik Minat Menonton di Tengah Maraknya Video Streaming,” J. CommLine, vol. 07, no. 02, pp. 94–105, 2022.

[4] O. B. Laksawicaka, B. Setioko, and E. Setyowati, “Gedung Bioskop Di Kota Semarang (Penekanan Desain Arsitektur Post Modern),” Imaji, vol. 3, no. 4, pp. 537–544, 2014, [Online]. Available: https://ejournal3.undip.ac.id/index.php/imaji/article/download/6952/6676

[5] Fransiska Vina Sari and Arief Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.

[6] A. Afif, “Analisis Metode Klasifikasi Data Naïve Bayes dan SVM Dalam Menentukan Keunikan Hotel,” JUTEKINF (Jurnal Teknol. Komput. dan Informasi), vol. 11, no. 1, pp. 38–46, 2023, doi: 10.52072/jutekinf.v11i1.526.

[7] M. I. Tuku, E. Umar, and A. Adis, “Analisis Sentimen Review Hotel Menggunakan Algoritma Naive Bayes Pada Ella Hotel Tambolaka,” vol. 02, no. 03, pp. 346–356, 2024.

[8] A. Cahya Kamilla, N. Priyani, R. Priskila, and V. Handrianus Pranatawijaya, “Analisis Sentimen Film Agak Laen Dengan Kecerdasan Buatan: Text Mining Metode Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2923–2928, 2024, doi: 10.36040/jati.v8i3.9587.

[9] F. S. Jumeilah, “Klasifikasi Opini Masyarakat Terhadap Jasa Ekspedisi JNE dengan Naïve Bayes,” J. Sist. Inf. Bisnis, vol. 8, no. 1, p. 92, 2018, doi: 10.21456/vol8iss1pp92-98.

[10] A. P. Wijaya and H. A. Santoso, “Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government Naïve Bayes Classification on Document Classification to Identify E-Government Content,” J. Appl. Intell. Syst., vol. 1, no. 1, pp. 48–55, 2016.

[11] N. Nurdin, M. Suhendri, Y. Afrilia, and R. Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC),” Sistemasi, vol. 10, no. 2, p. 268, 2021, doi: 10.32520/stmsi.v10i2.1193.

[12] S. M. Salsabila, A. Alim Murtopo, and N. Fadhilah, “Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier,” J. Minfo Polgan, vol. 11, no. 2, pp. 30–35, 2022, doi: 10.33395/jmp.v11i2.11640.

[13] Yudi Widhiyasana, Transmissia Semiawan, Ilham Gibran Achmad Mudzakir, and Muhammad Randi Noor, “Penerapan Convolutional Long Short-Term Memory untuk Klasifikasi Teks Berita Bahasa Indonesia,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 4, pp. 354–361, 2021, doi: 10.22146/jnteti.v10i4.2438.

[14] J. S. Informasi, F. Sains, D. Teknologi, U. Katolik, and M. Charitas, “Penggunaan Machine Learning ( ML ) dan Natural Language Processing ( NLP ) untuk mendeteksi Sentimen Ancaman Siber,” vol. 7, no. 1, pp. 1–6, 2025.

[15] M. N. M. Al-Faruq, S. Nur’aini, and M. H. Aufan, “Perancangan Ui/Ux Semarang Virtual Tourism Dengan Figma,” Walisongo J. Inf. Technol., vol. 4, no. 1, pp. 43–52, 2022, doi: 10.21580/wjit.2022.4.1.12079.

[16] N. Rahayu, “Analisis Sentimen Pasar Otomotif Mobil : Tweet Twitter Menggunakan Naïve Bayes,” vol. 8, no. 1, pp. 113–120, 2017.

[17] N. Nurwanda, N. Suarna, and W. Prihartono, “Penerapan Nlp (Natural Language Processing) Dalam Analisis Sentimen Pengguna Telegram Di Playstore,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1841–1846, 2024, doi: 10.36040/jati.v8i2.8469.

[18] D. Mustikasari, I. Widaningrum, R. Arifin, and W. H. E. Putri, “Comparison of Effectiveness of Stemming Algorithms in Indonesian Documents,” Proc. 2nd Borobudur Int. Symp. Sci. Technol. (BIS-STE 2020), vol. 203, pp. 154–158, 2021, doi: 10.2991/aer.k.210810.025.

[19] K. Adib, M. R. Handayani, W. D. Yuniarti, and K. Umam, “Opini Publik Pasca-Pemilihan Presiden: Eksplorasi Analisis Sentimen Media Sosial X Menggunakan SVM,” SINTECH (Science Inf. Technol. J., vol. 7, no. 2, pp. 80–91, 2024, doi: 10.31598/sintechjournal.v7i2.1581.

[20] C. A. Ul Hassan, M. S. Khan, and M. A. Shah, “Comparison of machine learning algorithms in data classification,” ICAC 2018 - 2018 24th IEEE Int. Conf. Autom. Comput. Improv. Product. through Autom. Comput., no. September, pp. 1–6, 2018, doi: 10.23919/IConAC.2018.8748995.

Downloads

Published

2025-10-21

How to Cite

[1]
H. Brian Maualan, M. Rini Handayani, and K. Umam, “Sentiment Analysis customer Towards Cinema Services in Semarang Using Naive Bayes Classifier on Google Reviews”, JAIC, vol. 9, no. 5, pp. 2920–2927, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.