Sentiment Classification of MyPertamina Reviews Using Naïve Bayes and Logistic Regression
DOI:
https://doi.org/10.30871/jaic.v9i4.9723Keywords:
Google Play Store, Logistic Regression, Naive Bayes, Sentiment Analysis, TF-IDFAbstract
This research conducts a comparative evaluation of the effectiveness of the Naïve Bayes and Logistic Regression algorithms in mapping public perceptions of the MyPertamina application on the Google Play Store. The data consists of 2,000 user reviews obtained through a scraping technique. The research steps include labeling the reviews as positive or negative, followed by pre-processing and TF-IDF weighting. The dataset was systematically divided into two parts, with 80% allocated for model training and the remaining 20% for evaluation. The Naïve Bayes and Logistic Regression models were implemented using the Python programming language and evaluated based on accuracy, precision, recall, and F1-score metrics. The analysis shows that Logistic Regression achieved an accuracy of 86%, while Naïve Bayes achieved 81%. Logistic Regression demonstrated superior performance as it effectively captures linear relationships between features in TF-IDF representations and provides a more balanced outcome in terms of precision and recall. In contrast, Naïve Bayes is more influenced by high-frequency word distributions and does not account for feature correlations, which can limit its performance in certain contexts. Therefore, Logistic Regression is considered more suitable for sentiment classification tasks in this study. These findings emphasize the importance of selecting appropriate algorithms for sentiment analysis and suggest opportunities for future research using alternative methods to enhance predictive accuracy.
Downloads
References
[1] M. Suhendra, W. Swastika, and M. Subianto, “Analisis Sentimen Pada Ulasan Aplikasi Video Conference Menggunakan Naive Bayes,” Sainsbertek J. Ilm. Sains Teknol., vol. 2, no. 1, pp. 1–9, 2021, doi: 10.33479/sb.v2i1.145.
[2] D. Angraina and A. Putri, “Analisis Sentimen Pengguna Aplikasi Google Meet Menggunakan Algoritma Support Vector Machine,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 472–478, 2022, doi: 10.37859/coscitech.v3i3.4260.
[3] G. Darmawan, S. Alam, and M. I. Sulistyo, “Analisis Sentimen Berdasarkan Ulasan Pengguna Aplikasi Mypertamina Pada Google Playstore Menggunakan Metode Naïve Bayes,” STORAGE – J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 100–108, 2023.
[4] R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.
[5] R. T. S. A. Putri, D. E. Ratnawati, and D. W. Brata, “Perbandingan Naïve Bayes dan K-Nearest Neighbor untuk Analisis Sentimen Aplikasi Gapura UB Berdasarkan Ulasan Pengguna pada Playstore,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 1, pp. 229–236, 2023, [Online]. Available: http://j-ptiik.ub.ac.id
[6] W. P. Ramadhan and D. Juardi, “Analisis Sentimen Ulasan Aplikasi BTN Mobile Menggunakan Algoritma Naive Bayes,” vol. 13, no. 1, 2025.
[7] A. C. Fauzan and K. Hikmah, “Implementasi Algoritma Naive Bayes Dalam Analisis Polarisasi Opini Masyarakat Terkait Vaksin Covid-19,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 122–128, 2022, doi: 10.36341/rabit.v7i2.2403.
[8] L. Ashbaugh and Y. Zhang, “A Comparative Study of Sentiment Analysis on Customer Reviews Using Machine Learning and Deep Learning,” Computers, vol. 13, no. 12, 2024, doi: 10.3390/computers13120340.
[9] A. M. Putri, W. K. Nofa, and D. A. P. Hapsari, “Penerapan metode bert untuk analisis sentimen ulasan pengguna aplikasi segari di google play store,” vol. 4, no. 1, pp. 89–104, 2025.
[10] M. Apriliyani, M. I. Musyaffaq, S. Nur’Aini, M. R. Handayani, and K. Umam, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes,” AITI, vol. 21, no. 2, pp. 298–311, Sep. 2024, doi: 10.24246/aiti.v21i2.298-311.
[11] M. Indra Buana and D. Brahma Arianto, “Analisis Sentimen Ulasan Pengguna Aplikasi ZenPro dengan Implementasi Algoritma Support Vector Machine (SVM),” Adopsi Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 45–52, 2024, doi: 10.30872/atasi.v3i1.1092.
[12] C. N. Adela, S. Karnila, S. Sutedi, and M. Agarina, “Analisis Ulasan Pengguna Aplikasi Seabank Dengan Support Vector Machine Dan Naïve Bayes,” J. Tekno Kompak, vol. 18, no. 2, p. 441, 2024, doi: 10.33365/jtk.v18i2.4156.
[13] D. A. N. Arifin, S. Pada, D. Teks, B. Indonesia, J. Pardede, and D. Darmawan, “Perbandingan Algoritma Stemming Porter , Sastrawi , Idris , Comparison Of Stemming Algorithms Porter , Sastrawi , Idris , And Arifin Setiono On Indonesian Text Documents,” vol. 12, no. 1, 2025, doi: 10.25126/jtiik.2025128860.
[14] S. Kusal et al., “Sentiment Analysis of Product Reviews Using Deep Learning and Transformer Models: A Comparative Study,” Lect. Notes Networks Syst., vol. 843, no. February, pp. 183–204, 2024, doi: 10.1007/978-981-99-8476-3_15.
[15] D. Septiani and I. Isabela, “Analisis Term Frequency Inverse Document Frequency (TF-IDF) Dalam Temu Kembali Informasi Pada Dokumen Teks,” SINTESIA J. Sist. dan Teknol. Inf. Indones., vol. 1, no. 2, pp. 81–88, 2023.
[16] H. Aprilianti, H. Mustofa, K. Umam, and M. R. Handayani, “Comparative Study of SVM , KNN , and Naïve Bayes for Sentiment Analysis of Religious Application Reviews,” vol. 9, no. 3, pp. 920–927, 2025.
[17] W. L. Azzahra, J. Indra, and S. Faisal, “Sentiment Analysis of User Reviews of the AdaKami Online Loan App from the App Store Using SVM and Naive Bayes,” vol. 9, no. 3, pp. 838–850, 2025.
[18] M. F. Zaenudin and Y. Sibaroni, “Combination Of Logistic Regression And Naïve Bayes,” vol. 10, no. 2, pp. 1286–1298, 2025.
[19] M. Tirta Nugraha, N. Nina Sulistiyowati, and U. Ultach Enri, “Analisis Sentimen Ulasan Aplikasi Satu Sehat Pada Google Play Store Menggunakan Naïve Bayes Classifier,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, pp. 3593–3601, 2024, doi: 10.36040/jati.v7i5.7753.
[20] K. Adib, M. R. Handayani, W. D. Yuniarti, and K. Umam, “Opini Publik Pasca-Pemilihan Presiden: Eksplorasi Analisis Sentimen Media Sosial X Menggunakan SVM,” SINTECH (Science Inf. Technol. J., vol. 7, no. 2, pp. 80–91, 2024, doi: 10.31598/sintechjournal.v7i2.1581.
[21] Z. Firmansyah and N. F. Puspitasari, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Berdasarkan Opini Pada Twitter Menggunakan Algoritma Naive Bayes,” J. Tek. Inform., vol. 14, no. 2, pp. 171–178, 2021, [Online]. Available: https://doi.org/10.15408/jti.v14i2.24024
[22] M. H. Aufan, M. R. Handayani, A. B. Nurjanna, and N. C. Hendro, “The Perceptions Of Semarang Five Star Hotel Tourists With Support Vector Machine On Google Reviews Persepsi Wisatawan Hotel Bintang Lima Semarang Dengan,” vol. x, no. December, pp. 1–8, 2023.
[23] M. D. Hendriyanto and B. N. Sari, “Penerapan Algoritma K-Nearest Neighbor Dalam Klasifikasi Judul Berita Hoax,” J. Ilm. Inform., vol. 10, no. 02, pp. 80–84, 2022, doi: 10.33884/jif.v10i02.5477.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dwi Yuni Saraswati, Maya Rini Handayani, Khothibul Umam, Mokhamad Iklil Mustofa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








