Sentiment Classification of Indonesian-Language Roblox Reviews Using IndoBERT with SMOTE Optimization
DOI:
https://doi.org/10.30871/jaic.v9i4.10155Keywords:
Sentiment Classification, IndoBERT, SMOTE, Game Reviews, Roblox, Analysis, Natural Language ProcessingAbstract
Roblox is a community-based gaming platform that is extremely popular among users of various age groups. Millions of user reviews available on the platform contain valuable information regarding user satisfaction, expectations, and criticisms of the gameplay experience. To extract insights from these reviews, a reliable natural language processing (NLP) approach tailored to the local language context is essential. This study aims to classify sentiments in Indonesian-language user reviews of Roblox into three categories: positive, negative, and neutral. The model used is IndoBERT, a transformer-based model specifically trained to understand the structure and vocabulary of the Indonesian language. One of the main challenges in this study is the imbalance in the number of data points across sentiment classes. To address this, the SMOTE (Synthetic Minority Over-sampling Technique) method is applied to strengthen the representation of minority classes. The dataset consists of thousands of reviews that have been manually labeled by annotators. Model performance is evaluated using accuracy, precision, recall, and F1-score metrics. The results show that the combination of IndoBERT and SMOTE provides significant improvements compared to the baseline approach without oversampling. This research contributes to the development of automated sentiment analysis systems in the Indonesian language, which can be applied across various digital platforms. The implementation of this model can assist game developers and product analysts in efficiently understanding user opinions, thereby driving improvements in service quality and user satisfaction in the future.
Downloads
References
[1] M. Haris, A. Suharso, E. H. Nurkifli, P. S. Informatika, U. S. Karawang, And T. Timur, “Analisis Sentimen Pada Game Efootball Di Google Play Store Menggunakan Algoritma Indobert,” Vol. 8, No. 6, Pp. 12108–12121, 2024, [Online]. Available: Https://Ejournal.Itn.Ac.Id/Index.Php/Jati/Article/View/11810
[2] Z. Muttaqqin, F. Rahman, P. S. Fisioterapi, F. I. Kesehatan, And U. Muhammadiyah, “Kontribusi Status Ergonomi Terhadap Keterbatasan Fungsional Neck Pada Esports Contribution Of Ergonomic Status To Functional Neck Limitations In Esports,” Vol. 17, No. 1, Pp. 175–188, 2025, [Online]. Available: Https://Juriskes.Com/Index.Php/Jrk/Article/View/2800/775
[3] I. Sopiandi And D. Susanti, “Menganalisis Informasi Metaverse Pada Game Online Roblox Secara Garis Besar,” J. Petisi (Pendidikan Teknol. Informasi), Vol. 3, No. 1, Pp. 1–4, 2022, Doi: 10.36232/Jurnalpetisi.V3i1.2021.
[4] T. Thiraviyam, Artificial Intelligence Marketing, Vol. 19, No. 4. 2018. [Online]. Available: Https://Www.Researchgate.Net/Profile/Budi-Harto/Publication/373043823_Artificial_Intelligence_Marketing/Links/64d522131290c33cce86a43f/Artificial-Intelligence-Marketing.Pdf
[5] D. Budianto, “Analisis Kepuasan Konsumen Terhadap Kualitas Pelayanan Dan Harga Produk Dengan Menggunakan Metode Customer Satisfaction Index (Csi) Dan Importance Performance Analysis (Ipa) (Studi Kasus : Minimarket Garuda Pekanbaru),” Skripsi, Fak. Sains Dan Teknol. Univ. Islam Negeri Sultan Syarif Kasim Pekanbaru, Pp. 1–113, 2018, [Online]. Available: Http://Repository.Uin-Suska.Ac.Id/1204/
[6] M. R. Manoppo, I. C. Kolang, D. N. Fiat, R. Michelly, And C. Mawara, “Analisis Sentimen Publik Di Media Sosial Terhadap Kenaikan Ppn 12 % Di Indonesia Menggunakan Indobert Analysis Of Public Sentiment On Social Media Towards The 12 % Ppn Increase In Indonesia Using Indobert,” Vol. 4, No. 2, Pp. 152–163, 2025, Doi: Https://Doi.Org/10.69916/Jkbti.V4i2.322.
[7] R. Kusnadi, Y. Yusuf, A. Andriantony, R. Ardian Yaputra, And M. Caintan, “Analisis Sentimen Terhadap Game Genshin Impact Menggunakan Bert,” Rabit J. Teknol. Dan Sist. Inf. Univrab, Vol. 6, No. 2, Pp. 122–129, 2021, Doi: 10.36341/Rabit.V6i2.1765.
[8] A. F. Alkindi And N. Nasution, “Analisis Sentimen Ulasan Pengguna Pada Game Roblox Dengan Metode Support Vector Machine Dan Naive Bayes,” J-Com (Journal Comput., Vol. 4, No. 2, Pp. 164–177, 2024, Doi: 10.33330/J-Com.V4i2.3319.
[9] M. Fuad Nasvian And R. Afif, “Public Opinion On Facebook Rebrand To Meta: A Twitter Big Data Analysis On The First 24 Hours After Meta Launched Opini Publik Terhadap Rebrand Facebook Ke Meta: Analisis Data Besar Twitter Pada 24 Jam Pertama Setelah Meta Diluncurkan,” J. Ilmu Pengetah. Dan Teknol. Komun., Vol. 24, No. 1, Pp. 1–19, 2022, [Online]. Available: Https://Pdfs.Semanticscholar.Org/4d94/1d98dc2668bd4e8e0419019bc544506f5024.Pdf
[10] S. Imron, E. I. Setiawan, And J. Santoso, “Deteksi Aspek Review E-Commerce Menggunakan Indobert Embedding Dan Cnn,” J. Intell. Syst. Comput., Vol. 5, No. 1, Pp. 10–16, 2023, Doi: 10.52985/Insyst.V5i1.267.
[11] R. R. Pratama, R. R. Suryono, S. Informasi, And U. T. Indonesia, “Performance Comparison Of Naive Bayes , Support Vector Machine And Random Forest Algorithms For Apple Vision Pro Sentiment Analysis Perbandingan Performa Algoritma Naive Bayes , Support Vector Machine Dan Random Forest Untuk Analisis Sentimen Apple,” Vol. X, No. December, Pp. 1–9, 2023, Doi: Https://Doi.Org/10.52436/1.Jutif.2025.6.1.4035.
[12] R. Forest And D. A. N. K. N. Dalam, “Analisis Sentimen : Perbandingan Performa Algoritma Naive Bayes , Support Vector Machine ,” 2025, [Online]. Available: Https://Bitsjournal.Researchfloor.Org/Archives/
[13] Rahayu Deny Danar Dan Alvi Furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, And K. Pengantar, “Tugas Akhir Tugas Akhir,” J. Ekon. Vol. 18, Nomor 1 Maret201, Vol. 2, No. 1, Pp. 41–49, 2020, [Online]. Available: Http://Repository.Uin-Suska.Ac.Id/Id/Eprint/85541
[14] A. Kunaefi, Z. Abidin, And R. Kusumawati, “Klasifikasi Berita Hoaks Bahasa Indonesia Menggunakan Indobert,” Vol. 10, No. 2, Pp. 1706–1714, 2025, [Online]. Available: Https://Jurnal.Stkippgritulungagung.Ac.Id/Index.Php/Jipi/Article/View/7811
[15] N. Widaad, D. Anggraini, E. Faculty, And U. Gunadarma, “Sentiment Analysis Of Chatgpt App User Reviews Using Svm And Cnn,” Vol. 5, No. 6, Pp. 1687–1700, 2024, Doi: Https://Doi.Org/10.52436/1.Jutif.2024.5.6.4010.
[16] A. Agung, A. Daniswara, I. Kadek, And D. Nuryana, “Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru,” J. Informatics Comput. Sci., Vol. 05, Pp. 97–100, 2023, Doi: Https://Doi.Org/10.26740/Jinacs.V5n01.P97-100.
[17] T. Review, P. Objek, And W. Baturraden, “Aspect Based Sentiment Analysis Menggunakan Indobert Model Melek It,” Vol. 10, No. 2, Pp. 157–166, 2024, Doi: Https://Doi.Org/10.30742/Melekitjournal.V10i2.358.
[18] T. Akhir, “Perbandingan Model Indobert Dan,” 2024, [Online]. Available: Https://Cdn.Ar-Raniry.Ac.Id/Aps-Test/Teknologi_Informasi/Pembimbing_Di_Usk_A.N_Hendri_Tugas_Akhir_Ulfia_Khairani_1908107010068.Pdf
[19] W. M. Baihaqi And A. Munandar, “Sentiment Analysis Of Student Comment On The College Performance Evaluation Questionnaire Using Naïve Bayes And Indobert,” Juita J. Inform., Vol. 11, No. 2, P. 213, 2023, Doi: 10.30595/Juita.V11i2.17336.
[20] U. Khairani, V. Mutiawani, And H. Ahmadian, “Pengaruh Tahapan Preprocessing Terhadap Model Indobert Dan Indobertweet Untuk Mendeteksi Emosi Pada Komentar Akun Berita Instagram,” J. Teknol. Inf. Dan Ilmu Komput., Vol. 11, No. 4, Pp. 887–894, 2024, Doi: 10.25126/Jtiik.1148315.
[21] F. Arifadilah Et Al., Frido Arifadilah-Fst. 2023. [Online]. Available: Https://Repository.Uinjkt.Ac.Id/Dspace/Handle/123456789/76873
[22] E. Setia Budi, A. Nofriyaldi Chan, P. Priscillia Alda, And M. Arif Fauzi Idris, “Resolusi : Rekayasa Teknik Informatika Dan Informasi Optimasi Model Machine Learning Untuk Klasifikasi Dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” Media Online, Vol. 4, No. 5, P. 509, 2024, [Online]. Available: Https://Djournals.Com/Resolusi
[23] M. F. Faturrian Et Al., “Analisis Sentimen Terhadap Game Palworld Di Steam Menggunakan Algoritma Bidirectional Encoder,” Vol. 9, No. 1, Pp. 898–905, 2025, Doi: Https://Doi.Org/10.36040/Jati.V9i1.12518.
[24] N. L. Sabili And F. R. Umbara, “Klasifikasi Penyakit Diabetes Menggunakan Algoritma Categorical Boosting Dengan Faktor Risiko Diabetes,” Vol. 8, No. 6, Pp. 11391–11398, 2024, Doi: Https://Doi.Org/10.36040/Jati.V8i6.11447.
[25] H. B. Tambunan And T. W. D. Hapsari, “Analisis Opini Pengguna Aplikasi New Pln Mobile Menggunakan Text Mining,” Petir, Vol. 15, No. 1, Pp. 121–134, 2021, Doi: 10.33322/Petir.V15i1.1352.
[26] R. Adolph, “Analisis Sentimen Terhadap Aksi Boikot Produk Pro Israel Pada Komentar Youtube Dengan Menggunakan Algoritma Naïve Bayes Classification (Nbc) & Support Vector Machine (Svm) Disusun,” Pp. 1–23, 2016, [Online]. Available: Https://Repository.Uinjkt.Ac.Id/Dspace/Handle/123456789/81397
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ferdi Ansyah, Ryan Randy Suryono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








