Identification of Buzzers in Skincare Reviews Using a Lexicon-Based Sentiment Analysis Method

Authors

  • Arfiana Diah Pramesti Universitas Islam Negeri Walisongo
  • Khothibul Umam Universitas Islam Negeri Walisongo
  • Maya Rini Handayani Universitas Islam Negeri Walisongo

DOI:

https://doi.org/10.30871/jaic.v9i5.11005

Keywords:

Buzzers, Product Reviews, Skincare, Sentiment Analysis, Lexicon, Classification, Social Media

Abstract

Along with the rapid development of digital technology, social media has become the main platform for consumers to share experiences about products, including skincare products. However, it is not uncommon for reviews provided by users to not reflect authentic experiences, but rather reviews created by certain parties, or buzzers, to manipulate public perception. The presence of buzzers in skincare reviews is important to consider, as they can affect consumer trust and influence purchasing decisions. This study aims to identify the presence of buzzers in skincare product reviews using a lexicon dictionary-based sentiment analysis. Of the 529 comments analyzed, 75 comments showed negative sentiment and 454 comments showed positive sentiment. The classification results revealed that 85.8% of the comments belonged to the non-buzzer category, while 14.2% were indicated as buzzers. Evaluation of the classification model showed high accuracy, reaching 93%, but performance in detecting buzzers was limited, with a recall metric of only 0.50. This shows that while the model managed to classify non-buzzer comments well, there are still difficulties in identifying buzzer comments, mostly due to data imbalance. This research emphasizes the importance of a proper analytical approach in detecting inauthentic reviews to ensure the information consumers receive remains accurate, transparent, and accountable.

Downloads

Download data is not yet available.

References

[1] N. A. F. Firdausi, “Buzzer Skincare: Udah Bikin Rugi Konsumen, Jatuhin Brand Lagi,” Terminal Mojok. [Online]. Available: https://mojok.co/terminal/buzzer-skincare-udah-bikin-rugi-konsumen-jatuhin-brand-lagi/

[2] C. Juditha, “Buzzer di Media Sosial pada Pilkada dan Pemilu Indonesia,” Semin. Nas. Komun. dan Inform., vol. 2019, pp. 199–212, 2019.

[3] U. Nisa, S. M. Amalia, R. Rahmawati, and W. Q. Khotimah, “Peran Buzzer Marketing dalam Melakukan Branding Usaha Mikro, Kecil, dan Menengah,” Komuniti J. Komun. dan Teknol. Inf., vol. 17, no. 1, pp. 75–97, Mar. 2025, doi: 10.23917/komuniti.v17i1.7870.

[4] N. F. E. Maulidatur Rohmah, “Branding Buzzer: Implementasi dan Implikasi pada Hubungan Masyarakat Pemerintahan,” Inter Komunika J. Komun., vol. 4, no. 2, pp. 135–148, 2019, [Online]. Available: https://elsam.or.id/pemrofilan-pemilih-dalam-penyebaran-iklan-politik-di-media-sosial-praktik-pada-pemilu-2019-dan-tantangannya-terhadap-privasi

[5] A. Dewita, “Pemanfaatan Buzzer Sebagai Media Promosi untuk Mengembangkan Ekonomi Kreatif di Dinas Pariwisata Provinsi Riau,” Universtas Negeri Islam Sultan Syarif Kasim Riau, 2020.

[6] B.-- Arianto, “Peran Buzzer Media Sosial Dalam Memperkuat Ekosistem Pemasaran Digital,” Optim. J. Ekon. dan Pembang., vol. 10, no. 1, p. 52, Jun. 2020, doi: 10.12928/optimum.v10i1.14343.

[7] N. A. Fitriyana, N. Suryadi, and R. D. V. Hapsari, “The Role of Social Media and Online Reviews in Building Brand Loyalty Through Trust,” J. Ilm. Manaj. Kesatuan, vol. 13, no. 5, pp. 3324–3336, Aug. 2025, doi: 10.37641/jimkes.v13i5.3602.

[8] A. T. Siswanto, R. R. Muhima, and S. R. Wardhana, “Analisa Sentimen Review Produk Handphone Pada Situs Amazon Menggunakan Pendekatan Lexicon Berdasarkan Sentiwordnet,” KERNEL J. Ris. Inov. Bid. Inform. dan Pendidik. Inform., vol. 3, no. 1, pp. 14–19, Sep. 2022, doi: 10.31284/j.kernel.2022.v3i1.1928.

[9] T. Hendrawati, N. L. W. S. R. Ginantra, and C. M. Saiman, “Analisis Sentimen Larangan Impor Pakaian Bekas Menggunakan Metode Support Vectore Machine dan Lexicon Based,” TEMATIK, vol. 11, no. 1, pp. 56–64, Jun. 2024, doi: 10.38204/tematik.v11i1.1890.

[10] Y. Azhar, “Metode Lexicon-Learning Based Untuk Identifikasi Tweet Opini Berbahasa Indonesia,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 3, p. 237, Jan. 2018, doi: 10.23887/janapati.v6i3.11739.

[11] Y. I. Nurhasanah and M. T. Naufal, “Klasifikasi Sentimen Pada Buzzer Politik Jelang Pemilu 2024 menggunakan Metode Lexicon-based,” MIND J., vol. 9, no. 2, pp. 166–178, Dec. 2024, doi: 10.26760/mindjournal.v9i2.166-178.

[12] B. Pang and L. Lee, “Opinion Mining and Sentiment Analysis,” Found. Trends® Inf. Retr., vol. 2, no. 1–2, pp. 1–135, 2008, doi: 10.1561/1500000011.

[13] Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” J. Inf. Syst. Manag., vol. 3, no. 2, pp. 44–49, Jul. 2021, doi: 10.24076/joism.2021v3i2.558.

[14] A. M. Yolanda and R. T. Mulya, “Implementasi Metode Support Vector Machine untuk Analisis Sentimen pada Ulasan Aplikasi Sayurbox di Google Play Store,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 6, no. 2, pp. 76–83, 2024, doi: 10.35580/variansiunm258.

[15] A. R. Ismail and Raden Bagus Fajriya Hakim, “Implementasi Lexicon Based Untuk Analisis Sentimen Dalam Menentukan Rekomendasi Pantai Di DI Yogyakarta Berdasarkan Data Twitter,” Emerg. Stat. Data Sci. J., vol. 1, no. 1, pp. 37–46, Jan. 2023, doi: 10.20885/esds.vol1.iss.1.art5.

[16] R. Fauzi Akbar, M. Habibi, P. Winar Cahyo, and N. Alfi Sa’diya, “Metode Hybrid Menggunakan Pendekatan Lexicon Based dan Naive Bayes Classifier Untuk Analisis Sentimen Terkait Jaminan Hari Tua,” Teknomatika J. Inform. dan Komput., vol. 16, no. 2, pp. 73–79, Dec. 2023, doi: 10.30989/teknomatika.v16i2.1247.

[17] S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.

[18] O. Manullang, C. Prianto, and N. H. Harani, “Analisis Sentimen Untuk Memprediksi Hasil Calon Pemilu Presiden Menggunakan Lexicon Based Dan Random Forest,” J. Ilm. Inform., vol. 11, no. 02, pp. 159–169, 2023, doi: 10.33884/jif.v11i02.7987.

[19] B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix,” J. Inform. Upgris, vol. 6, no. 2, Jan. 2021, doi: 10.26877/jiu.v6i2.6552.

[20] Arif Widiasan Subagio, Anggraini Puspita Sari, and Andreas Nugroho Sihananto, “Klasifikasi Lexicon-Based Sentiment Analysis Tragedi Kanjuruhan pada Twitter Menggunakan Algoritma Convolutional Neural Network,” J. Ilm. Sist. Inf. dan Ilmu Komput., vol. 4, no. 1, pp. 166–177, Jan. 2024, doi: 10.55606/juisik.v4i1.759.

[21] A. R. Hidayati, A. S. Fitrani, M. A. Rosid, F. Sains, and D. Teknologi, “Analisa Sentimen Pemilu 2019 Pada Judul Berita Online Menggunakan Metode Logistic Regression,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 4, no. 2, pp. 298–305, 2023, [Online]. Available: http://www.pkm.tunasbangsa.ac.id/index.php/kesatria/article/view/164

[22] A. Cardova and A. Hermawan, “Implementasi Metode LSTM Untuk Mengklasifikasi Berita Palsu Pada PolitiFact,” J. FASILKOM, vol. 13, no. 3, pp. 471–479, Dec. 2023, doi: 10.37859/jf.v13i3.6175.

Downloads

Published

2025-10-14

How to Cite

[1]
A. D. Pramesti, K. Umam, and M. R. Handayani, “Identification of Buzzers in Skincare Reviews Using a Lexicon-Based Sentiment Analysis Method”, JAIC, vol. 9, no. 5, pp. 2598–2606, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.