Sentiment Analysis on BRImo Application Reviews Using IndoBERT

Authors

  • Asyer Aprinando Pratama Simarmata Informatika, Universitas Amikom Yogyakarta
  • Theopilus Bayu Sasongko Informatika, Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i3.8162

Keywords:

BRImo, Digital Banking, IndoBERT, Natural Language Processing, Sentiment Analysis

Abstract

The advancement of information technology has significantly impacted various sectors, including digital banking. BRImo, a mobile banking application from Bank Rakyat Indonesia (BRI), has been widely used, generating numerous user reviews that reflect their experiences. This study applies IndoBERT, a transformer-based model specifically designed for the Indonesian language, to analyze sentiment in BRImo user reviews. IndoBERT excels in handling the unique characteristics of the Indonesian language, such as informal and mixed-language usage. The dataset was collected from Kaggle and processed through labeling, data balancing, and splitting into 80% training, 10% validation, and 10% testing data. The IndoBERT model was evaluated using a confusion matrix and achieved 90% accuracy, with F1-scores of 0.89 for negative, 0.91 for neutral, and 0.90 for positive sentiments. Sentiment analysis results indicate that a significant portion of negative reviews highlight issues related to login difficulties, transaction failures, and slow customer service response times. These insights can help BRI enhance application reliability and customer support efficiency. This study demonstrates that IndoBERT is effective in sentiment analysis for Indonesian text and can be utilized to enhance BRImo services by providing deeper insights into user feedback.

Downloads

Download data is not yet available.

References

[1] P. A. T. P. Pika, K. Darmaastawan, A. I. Dewiningrat, and J. J. P. Latupeirissa, “Antesenden Minat Menggunakan Bri Mobile (Brimo) Pada Nasabah Bri Kantor Cabang Sesetan, Denpasar,” Jurnal Akuntansi dan Pajak, vol. 22, no. 2, 2022, doi: http://dx.doi.org/10.29040/jap.v22i2.4439.

[2] F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” 2022. [Online]. Available: http://j-ptiik.ub.ac.id

[3] S. A. Prasetyo and W. T. Atmojo, “Jurnal Media Informatika Budidarma Analisis Sentimen Terhadap Penggunaan Aplikasi Astro Menggunakan Algoritma Naïve Bayes,” vol. 7, pp. 2149–2158, 2023, doi: 10.30865/mib.v7i4.6750.

[4] S. M. Kom, “Sentimen Pengguna Aplikasi BRImo: Kinerja Algoritma Support Vector Machine, Naive Bayes, dan Adaboost,” SATIN - Sains dan Teknologi Informasi, vol. 9, no. 2, pp. 195–204, Dec. 2023, doi: 10.33372/stn.v9i2.1057.

[5] N. Fibriyanti Arminda, N. Sulistiyowati, and T. Nur Padilah, “Implementasi Algoritma Multinomial Naive Bayes Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Brimo,” 2023.

[6] M. Khoirul, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” 2023.

[7] M. Umair and E. R. Sutanto, “Jurnal Media Informatika Budidarma Analisis Sentimen Ulasan Pengguna Pada Aplikasi BRImo BRI Menggunakan Metode Klasifikasi Algoritma Naive Bayes,” 2024, doi: 10.30865/mib.v8i2.7381.

[8] A. Nuraini, A. Faqih, G. Dwilestari, N. D. Nuris, and R. Narasati, “Analisis Sentimen Terhadap Review Aplikasi Brimo Di Google Play Store Menggunakan Algoritma Naïve Bayes,” 2023.

[9] P. S. Arya Bhagaskara M, S. Suryani Prasetyowati, and Y. Sibaroni, “Hoax Detection of Indonesian News Media on Twitter Using IndoBERT with Word Embedding Word2Vec,” vol. 7, no. 3, pp. 1088–1096, 2023, doi: 10.30865/mib.v7i3.6367.

[10] R. Nugroho, N. Azka, and W. Sayudha Rendra Graha, “Analisis Sentimen Ulasan Aplikasi Mobile JKN di Google PlayStore Menggunakan IndoBERT.”

[11] G. Hakim, T. N. Fatyanosa, and A. W. Widodo, “Analisis Sentimen Masyarakat terhadap Kereta Cepat Whoosh pada Platform X menggunakan IndoBERT,” 2017. [Online]. Available: http://j-ptiik.ub.ac.id

[12] D. Sandi and E. Utami, “Analisis Sentimen Publik Terhadap Elektabilitas Ganjar Pranowo di Tahun Politik 2024 di Twitter dengan Algoritma KNN dan Naïve Bayes,” vol. 7, no. 3, pp. 1097–1108, 2023, doi: 10.30865/mib.v7i3.6298.

[13] C. Solheim Bojer and J. P. Meldgaard, “Learnings from Kaggle’s Forecasting Competitions.” [Online]. Available: https://www.kaggle.com/

[14] H. Parasian Doloksaribu and Y. T. Samuel, “Komparasi Algoritma Data Mining Untuk Analisis Sentimen Aplikasi Pedulilindungi,” vol. 16, no. 1, 2022, doi: 10.47111/JTI.

[15] J. Prasetya, “Leibniz : Jurnal Matematika Penerapan Klasifikasi Naive Bayes Dengan Algoritma Random Oversampling Dan Random Undersampling Pada Data Tidak Seimbang Cervical Cancer Risk Factors,” vol. 2, no. 2.

[16] R. Merdiansah and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.

[17] R. Nurul Ikhsani and F. Fauzi Abdulloh, “Jurnal Media Informatika Budidarma Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online,” vol. 7, pp. 1667–1677, 2023, doi: 10.30865/mib.v7i4.6809.

[18] F. Putra Herlambang and D. Avianto, “Jurnal Media Informatika Budidarma Analisis Sentimen Opini Pengguna Twitter Terhadap Tragedi Kanjuruhan Malang dengan Metode Support Vector Machine,” vol. 7, pp. 1727–1739, 2023, doi: 10.30865/mib.v7i4.6332.

[19] L. Yusuf and S. Masripah, “Sentimen Analisis Chatgpt Dengan Algoritma Naïve Bayes Dan Optimasi PSO,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 59–64, Aug. 2023, doi: 10.33480/inti.v18i1.4230.

[20] T. T. Mengistie and D. Kumar, “Deep Learning Based Sentiment Analysis on COVID-19 Public Reviews,” in 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, Institute of Electrical and Electronics Engineers Inc., Apr. 2021, pp. 444–449. doi: 10.1109/ICAIIC51459.2021.9415191.

[21] R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Mypertamina Pada Google Play Store Menggunakan Algoritma NBC,” Jurnal Teknologi Terpadu, vol. 9, no. 1, pp. 42–48, 2023.

[22] A. Diffa Maulana and K. M. Lhaksmana, “Jurnal Media Informatika Budidarma Sentiment Analysis on Tweets of Kanjuruhan Tragedy Using Deep Learning IndoBERTweet,” 2023, doi: 10.30865/mib.v7i3.6115.

[23] U. Sumalatha, K. Krishna Prakasha, S. Prabhu, and V. C. Nayak, “Enhancing Finger Vein Recognition with Image Preprocessing Techniques and Deep Learning Models,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3498601.

[24] D. Ismiyana Putri, A. Nurul Alfian, M. Yudhi Putra, and P. Dwi Mulyo, “IndoBERT Model Analysis: Twitter Sentiments on Indonesia’s 2024 Presidential Election,” 2024. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[25] P. Hanif Zakaria, D. Nurjannah, and H. Nurrahmi, “Misogyny Text Detection on Tiktok Social Media in Indonesian Using the Pre-trained Language Model IndoBERTweet,” vol. 7, no. 3, pp. 1297–1305, 2023, doi: 10.30865/mib.v7i3.6438.

[26] L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using IndoBERT Language Models,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 3, pp. 746–757, 2023, doi: 10.26555/jiteki.v9i3.26490.

[27] N. B. B. Tjikdaphia and S. Sulastri, “Comparison Of Nbc, Svm, Knn Classification Results In Sentiment Analysis Of Mobile JKN,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 9, no. 4, pp. 665–672, Sep. 2023, doi: 10.33330/jurteksi.v9i4.2539.

[28] D. T. Dunrui, “brimo_googleplaystore_review,” 2023. Accessed: Jul. 11, 2024. [Online]. Available: https://www.kaggle.com/datasets/dannytheodore/brimo-app-review?resource=download&select=brimo_googleplaystore_review.csv

[29] F. Novianti and K. R. N. Wardani, “Analisis Sentimen Masyarakat Terhadap Data Tweet Traveloka Selama Rapid Test Antigen Menggunakan Algoritma Naïve Bayes,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 3, pp. 922–933, Aug. 2023, doi: 10.29100/jipi.v8i3.3973.

[30] L. Rice, E. Wong, and J. Z. Kolter, “Overfitting in adversarially robust deep learning,” 2020. [Online]. Available: https://github.com/

[31] R. Hardian, L. D. Oktaviana, and A. Hamdi, “Sentiment Analysis Of Pegipegi.Com On Google Playstore With Naïve Bayes Algorithm,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 10, no. 3, pp. 583–590, Jun. 2024, doi: 10.33330/jurteksi.v10i3.3201.

Downloads

Published

2025-06-03

How to Cite

[1]
A. A. P. Simarmata and T. B. Sasongko, “Sentiment Analysis on BRImo Application Reviews Using IndoBERT”, JAIC, vol. 9, no. 3, pp. 851–862, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.