Public Opinion on The MBG Program: Comparative Evaluation of InSet and VADER Lexicon Labeling Using SVM on Platform X
DOI:
https://doi.org/10.30871/jaic.v9i6.9978Keywords:
Sentiment Analysis, InSet Lexicon, Makan Bergizi Gratis (MBG), Support Vector Machine, VADER LexiconAbstract
This study aims to examine public opinion regarding the MBG program on platform X by utilizing the Support Vector Machine (SVM) algorithm using two sentiment labeling methods, namely InSet Lexicon and VADER Lexicon. The data was then divided into 70% for training and 30% for testing, and extracted using Term Frequency–Inverse Document Frequency (TF-IDF) to convert the text into numerical representations. The SVM model was trained on both labeled data sets to compare their performance based on evaluation metrics such as accuracy, precision, recall, and F1 score. The results show that labeling with VADER produces a more dominant number of neutral sentiments, while InSet Lexicon produces a more balanced distribution between positive, negative, and neutral sentiments. At the modeling stage, SVM with InSet labels achieved an accuracy of 80.10%, with precision of 0.81, recall of 0.80, and an F1 score of 0.79. Meanwhile, SVM with VADER labels achieved an accuracy of 93.83%, precision of 0.94, recall of 0.94, and an F1 score of 0.93. Although VADER showed higher accuracy values, InSet Lexicon is considered more efficient and relevant for sentiment analysis in Indonesia because it is capable of producing more balanced and contextual classifications.
Downloads
References
[1] G. D’Aniello, M. Gaeta, and I. La Rocca, KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis, vol. 55, no. 7. Springer Netherlands, 2022. doi: 10.1007/s10462-021-10134-9.
[2] F. Aftab et al., “A Comprehensive Survey on Sentiment Analysis Techniques,” Int. J. Technol., vol. 14, no. 6, pp. 1288–1298, 2023, doi: 10.14716/ijtech.v14i6.6632.
[3] H. Firda et al., “Perbandingan Pelabelan Rating - based dan Inset Lexicon - based dalam Analisis Sentimen Menggunakan SVM ( Studi Kasus : Ulasan Aplikasi GoBiz di Google Play Store ) Comparison of Rating - based and Inset Lexicon - based Labeling in Sentiment Analysis usin,” vol. 14, pp. 516–528, 2025.
[4] M. Gultom, J. Marikros, W. Rusli, and V. C. Mawardi, “Penerapan Vader Sentiment untuk Mendeteksi Sentimen Bahasa Inggris berbasis Website,” Semin. Nas. Penelit. (SEMNAS CORISINDO 2024), pp. 13–18, 2024, [Online]. Available: http://corisindo.utb-univ.ac.id/index.php/penelitian/article/view/9
[5] Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, and Andreas Nugroho Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem J. Inform. dan Sains Teknol., vol. 2, no. 3, pp. 62–76, 2024, doi: 10.62951/modem.v2i3.112.
[6] D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 24–33, 2021, doi: 10.57152/malcom.v1i1.20.
[7] N. Giovanni, M. M. Olivia Pangaribuan, A. Mulyono, and Z. Muttaqin, “Analisis Sentimen Menggunakan Metode Vader, Sentiart dan Analisis Tematik pada Akun Instagram Pecinta Hewan Peliharaan,” J. Manaj. Pendidik. Dan Ilmu Sos., vol. 6, no. 1, pp. 426–443, 2024, doi: 10.38035/jmpis.v6i1.3425.
[8] A. Rufaida, A. Permanasari, and N. Setiawan, “Lexicon-Based Sentiment Analysis Using Inset Dictionary: A Systematic Literature Review,” 2023, doi: 10.4108/eai.5-10-2022.2327474.
[9] Heti Aprilianti, Khothibul Umam, and Maya Rini Handayani, “Comparative Study of SVM, KNN, and Naïve Bayes for Sentiment Analysis of Religious Application Reviews,” J. Appl. Informatics Comput., vol. 9, no. 3, pp. 920–927, 2025, doi: 10.30871/jaic.v9i3.9482.
[10] J. Wilson and C. Hernández-Hall, “Octava Conferencia Internacional AAAI sobre Weblogs y Redes Sociales,” Eighth Int. AAAI Conf. Weblogs Soc. Media, p. 18, 2014, [Online]. Available: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109
[11] Ahmad Taufik Nursal, “Battle of Sentiment Lexicons: Wordnet, Sentiwordnet, Textblob and Vader in Web Forum Analysis,” J. Inf. Syst. Eng. Manag., vol. 10, no. 2s, pp. 84–93, 2025, doi: 10.52783/jisem.v10i2s.203.
[12] A. Okta, K. Adi, A. Sanjaya, A. B. Setiawan, and P. Korespondens, “Penerapan Inset Lexicon untuk Analisis Sentimen Penonton Video JKT48 di YouTube 1*,” Inotek, vol. 9, p. 1276, 2025.
[13] R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.
[14] M. Kusairi and S. Agustioan, “11531-Article Text-43685-1-10-20221130,” J. Teknol. Inf. dan Komun., vol. 13, no. 2, pp. 140–150, 2002.
[15] D. Sabrina, A. D. Sabilla, N. Azizah, and * Korespondensi, “Kombinasi Vader Lexicon Dan Support Vector Machine Untuk Klasifikasi Sentimen Komentar Aplikasi Blu Bca,” Inser. Inf. Syst. Emerg. Technol. J., vol. 6, no. 1, pp. 22–33, 2025.
[16] M. Apriliyani, “Implementasi analisis sentimen pada ulasan aplikasi Duolingo di Google Playstore menggunakan algoritma Naïve Bayes,” AITI, vol. 21, no. Analysis Sentiment, p. 14, 2024.
[17] Rahayu deny danar dan alvi furwanti Alwie, A. B. Prasetio, R. Andespa, P. N. Lhokseumawe, and K. Pengantar, “Analisis Sentimen Ulasan Aplikasi M-Paspor Menggunakan Naive Bayes Dan Support Vector Machine,” J. Ekon. Vol. 18, Nomor 1 Maret201, vol. 2, no. 1, pp. 41–49, 2020.
[18] R. Firdaus, I. Asror, and A. Herdiani, “Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation,” Indones. J. Comput., vol. 6, no. 1, pp. 1–12, 2021, doi: 10.34818/indojc.2021.6.1.408.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Na'ilah Puti Zakiyah, Khothibul Umam, Adzhal Arwani Mahfudh

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








