Comparison of K-Nearest Neighbors and Naive Bayes Classifier Algorithms in Sentiment Analysis of 2024 Election in Twitter (X)

Authors

  • Lola Enjelia Universitas Buana Perjuangan Karawang
  • Yana Cahyana Universitas Buana Perjuangan Karawang
  • Rahmat Universitas Buana Perjuangan Karawang
  • Deden Wahiddin Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.30871/jaic.v9i3.9593

Keywords:

Sentiment analysis, K-Nearest Neighbor (KNN), Naive Bayes, 2024 Election, Twitter (X)

Abstract

This study compares the performance of the K-Nearest Neighbors (K-NN) and Naive Bayes Classifier (NBC) algorithms in sentiment analysis of the 2024 Regional Election (Pilkada) based on Indonesian local data sourced from platform X. A total of 1,187 tweets were collected through crawling, followed by extensive preprocessing and manual sentiment labeling by a professional linguist to ensure data validity and reliability. The study highlights NBC's superior accuracy (81.05%) compared to K-NN (75.26%), largely due to the characteristics of short-text social media data that align with NBC's independence assumptions. Key terms identified through TF-IDF analysis include “pilkada”, “2024”, and “damai” in positive sentiment, while “mahkamah konstitusi” and “kalah” dominated negative sentiment. The results imply that although public discourse largely supports the election process, critical sentiments toward election dispute issues persist. These findings offer practical implications for election authorities, policymakers, and digital campaign strategists, particularly in optimizing public communication strategies, early detection of potential conflicts, and designing public opinion monitoring systems based on real-time sentiment analysis. By leveraging high-quality labeled local data, this study makes a significant contribution to modeling public opinion dynamics in Indonesia during political events.

Downloads

Download data is not yet available.

References

[1] Y. Cahyana, “Analisis Sentiment Pembelajaran Tatap Muka Terbatas (Ptmt) Selama Pandemik Covid-19 Menggunakan Algoritma Naïve Bayes,” 2023, Doi: Https://Doi.Org/10.33322/Petir.V16i2.1964.

[2] A. M. Siregar, “Analisis Sentimen Pindah Ibu Kota Negara (Ikn) Baru Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine (Svm),” Faktor Exacta, Vol. 16, No. 3, 2023, Doi: Http://Dx.Doi.Org/10.30998/Faktorexacta.V16i3.16703

[3] M. R. Pratama, A. Fauzi, D. Wahiddin, And A. R. Pratama, “Analisis Sentimen Kebijakan Pembelian Gas 3 Kg Dengan Ktp Menggunakan Naïve Bayes,” Jutisi: Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, Vol. 13, No. 2, Pp. 1338–1351, 2024, Doi: Http://Dx.Doi.Org/10.35889/Jutisi.V13i2.2168.

[4] R. F. R. Pohan, D. E. Ratnawati, And I. Arwani, “Implementasi Algoritma Support Vector Machine Dan Model Bag-Of-Words Dalam Analisis Sentimen Mengenai Pilkada 2020 Pada Pengguna Twitter,” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, Vol. 6, No. 10, Pp. 4924–4931, 2022.

[5] H. Budiati, K. J. D. Lase, And V. C. Mendrofa, “Analisis Calon Bupati Sleman Pada Pilkada 2024 Dengan Menggunakan Natural Language Processing Dan Fuzzy Logic,” Jurnal Informatika Dan Rekayasa Elektronik, Vol. 7, No. 2, Pp. 334–342, 2024, Doi: Https://Doi.Org/10.36595/Jire.V7i2.1307.

[6] L. S. Windanu, A. S. Wiguna, And A. E. Budianto, “Optimasi Metode K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Analisis Sentimen Pemilihan Presiden Indonesia Tahun 2024-2029,” Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 1, Pp. 35–42, 2024, Doi: Https://Doi.Org/10.36040/Jati.V8i1.6874.

[7] M. F. Haikal, J. Indra, And R. Rahmat, “Analisis Sentimen Bakal Calon Presiden Indonesia 2024 Dengan Algoritma Naïve Bayes,” Jutisi: Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, Vol. 13, No. 1, Pp. 43–51, 2024, Doi: Http://Dx.Doi.Org/10.35889/Jutisi.V13i1.1598.

[8] G. N. V. Kurniawan And N. R. Feta, “Perbandingan Akurasi Algoritma Naïve Bayes Dan Support Vector Machine Dalam Analisis Sentimen Pengguna Twitter Terhadap Aplikasi Sirekap,” Fountain Of Informatics Journal, Vol. 9, No. 2, Pp. 65–71, 2024, Doi: Https://Dx.Doi.Org/10.21111/Fij.V9i2.12717.

[9] R. Noviana And I. Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” Jurnal Teknik Dan Science, Vol. 2, No. 2, Pp. 51–60, 2023, Doi: Https://Doi.Org/10.56127/Jts.V2i2.791.

[10] S. Wahyu, “Perbandingan Model Algoritma Klasifikasi Pada Analisis Sentimen Opini Masyarakat Terhadap Layanan Kereta Cepat Jakarta Bandung (The Whoosh),” Proceeding Konik (Konferensi Nasional Ilmu Komputer), Vol. 6, Pp. 218–225, 2023.

[11] A. Agustian And F. Nurapriani, “Analisis Sentimen, Text Mining Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitter,” Jurnal Tika, Vol. 7, No. 3, Pp. 243–249, 2022, Doi: Https://Doi.Org/10.51179/Tika.V7i3.1550.

[12] Y. Khoiruddin, A. Fauzi, And A. M. Siregar, “Analisis Sentimen Gojek Indonesia Pada Twitter Menggunakan Algoritme Naïve Bayes Dan Support Vector Machine,” Progresif: Jurnal Ilmiah Komputer, Vol. 19, No. 1, Pp. 391–400, 2023.

[13] N. A. Nevrada And M. A. Syaputra, “Sentiment Analysis Of Telegram App Reviews On Google Play Store Using The Support Vector Machine (Svm) Algorithm,” Journal Of Applied Informatics And Computing, Vol. 9, No. 1, Pp. 96–105, 2025.

[14] Y. R. Nasution, S. Suhardi, And I. H. Satrio, “Penerapan Algoritma Klasifikasi Naïve Bayes Untuk Analisis Sentimen Tentang Pemilu 2024,” Elkom: Jurnal Elektronika Dan Komputer, Vol. 17, No. 2, Pp. 495–502, 2024, Doi: Https://Doi.Org/10.51903/Elkom.V17i2.2053.

[15] A. R. Gunawan And R. F. A. Aziza, “Sentiment Analysis Using Lstm Algorithm Regarding Grab Application Services In Indonesia,” Journal Of Applied Informatics And Computing, Vol. 9, No. 2, Pp. 322–332, 2025, Doi: Https://Doi.Org/10.30871/Jaic.V9i2.8696.

[16] J. Setyanto And T. B. Sasongko, “Sentiment Analysis Of Sirekap Application Users Using The Support Vector Machine Algorithm,” Journal Of Applied Informatics And Computing, Vol. 8, No. 1, Pp. 71–76, 2024, Doi: Https://Doi.Org/10.30871/Jaic.V8i1.7772.

[17] A. A. Muttaqin, S. Alam, And M. A. Komara, “Analisis Sentimen Isu Kecurangan Pemilu 2024 Berdasarkan Opini Pada Media Sosial Twitter Menggunakan Metode Crisp-Dm Dengan Algoritma Naïve Bayes Classifier,” Jati (Jurnal Mahasiswa Teknik Informatika), Vol. 8, No. 5, Pp. 8764–8772, 2024, Doi: Analisissentimenisukecuranganpemilu2024berdasarkanopinipadamediasosialtwittermenggunakanmetodecrisp-Dmdenganalgoritmanaïvebayesclassifier.

[18] M. Fadil, “Perbandingan Metode K-Nearest Neighbors Dan Naïvebayes Classification Dalam Klasifikasi Sentimen Masyarakat Terhadap Pemilu Presiden Tahun 2024,” Nov. 2024, Doi: Http://Dx.Doi.Org/10.35889/Jutisi.V13i3.2068.

[19] A. K. Subagyo, H. S. H. Syahputra, Z. F. Khoiri, And S. Sukmadiningtyas, “Analisis Sentimen Masyarakat Terhadap Pelantikan Kabinet Merah Putih Pada Media Sosial,” In Proceedings Of The National Conference On Electrical Engineering, Informatics, Industrial Technology, And Creative Media, 2024, Pp. 1080–1089.

[20] T. P. R. Sanjaya, A. Fauzi, And A. F. N. Masruriyah, “Analisis Sentimen Ulasan Pada E-Commerce Shopee Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” Infotech: Jurnal Informatika & Teknologi, Vol. 4, No. 1, Pp. 16–26, 2023,Doi:Https://Doi.Org/10.37373/Infotech.V4i1.422.

Downloads

Published

2025-06-19

How to Cite

[1]
L. Enjelia, Y. Cahyana, Rahmat, and D. Wahiddin, “Comparison of K-Nearest Neighbors and Naive Bayes Classifier Algorithms in Sentiment Analysis of 2024 Election in Twitter (X)”, JAIC, vol. 9, no. 3, pp. 946–954, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.