Utilization of EfficientNet-B0 to Identify Oncomelania Hupensis Lindoensis as a Schistosomiasis Host

Authors

DOI:

https://doi.org/10.30871/jaic.v9i3.9058

Keywords:

Schistosomiasis, Oncomelania hupensis lindoensis, Convolutional Neural Network (CNN), EfficientNet-B0

Abstract

Schistosomiasis caused by the Schistosoma japonicum worm is a significant health problem in Indonesia, especially in endemic areas such as the Napu Plateau and Bada Plateau. The main problem in controlling this disease is the difficulty in rapid and accurate identification of Oncomelania hupensis lindoensis snails as intermediate hosts of the parasite. This research aims to develop an artificial intelligence-based system that can efficiently identify the snail species. The stages of this research include collecting snail image data from the Central Sulawesi Provincial Health Office, consisting of 2100 images covering seven snail species, then processed through preprocessing and augmentation stages. The model applied was EfficientNet-B0. The results showed that the EfficientNet-B0 model achieved 98.80% training accuracy and 98.33% validation accuracy. Confusion matrix testing showed good performance, with an accuracy of 98% and for the species Oncomelania hupensis lindoensis had a recall of 93%, precision of 100%, F1-score of 97%, and the resulting AUC value of 99.7%. This research successfully developed an efficient identification system, which is expected to help health surveillance personnel in accelerating the identification process of schistosomiasis intermediate hosts.

Downloads

Download data is not yet available.

Author Biographies

Rahmah Laila, Universitas Tadulako

Teknik Informatika

Mohammad Yazdi Pusadan, Universitas Tadulako

Sistem Informasi

Yuri Yudhaswana, Universitas Tadulako

Teknik Informatika

Nouval Trezandy Lapatta, Universitas Tadulako

Teknik Informatika

Hajra Rasmita Ngemba, Universitas Tadulako

Sistem Informasi

References

[1] N. B. Rasiman and L. S. Sampali, “Pengetahuan dan Sikap Masyarakat Dalam Upaya Pencegahan Penyakit Schistosomiasis di Puskesmas Wuasa Kabupaten Poso,” Husada Mahakam J. Kesehat., vol. 4, no. 7, p. 404, Jan. 2019, doi: 10.35963/hmjk.v4i7.142.

[2] A. Nurwidayati, P. P. Frederika, and M. Sudomo, “Fluktuasi Schistosomiasis di Daerah Endemis Provinsi Sulawesi Tengah Tahun 2011-2018,” Bul. Penelit. Kesehat., vol. 47, no. 3, pp. 199–206, Dec. 2019, doi: 10.22435/bpk.v47i3.1276.

[3] Vera Diana Towidjojo, Alya Shafira Nurhafizhah, and Sutrisnawati Mardin, “Faktor-Faktor yang Berhubungan dengan Perilaku Pencegahan Schistosomiasis pada Masyarakat Desa Kaduwaa Napu Kabupaten Poso,” Promot. J. Kesehat. Masy., vol. 13, no. 1, pp. 22–27, Jun. 2023, doi: 10.56338/promotif.v13i1.3719.

[4] W. Halim and P. Mudjihartono, “Kecerdasan Buatan dalam Teknologi Kedokteran: Survey Paper,” vol. 2, no. 1, 2022.

[5] U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 169–173, May 2023, doi: 10.30591/jpit.v8i2.5229.

[6] F. N. Cahya, N. Hardi, D. Riana, and S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” SISTEMASI, vol. 10, no. 3, p. 618, Sep. 2021, doi: 10.32520/stmsi.v10i3.1248.

[7] A. Kanaya Putri and A. Silvia Handayani, “Penerapan Arsitektur EfficientNet Untuk Pembuatan Model Algoritma Convolutional Neural Network Pada Klasifikasi Bahasa Isyarat,” Technol. Sci., vol. 6, no. 2, 2024, doi: 10.47065/bits.v6i2.5592.

[8] R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, doi: 10.24853/justit.12.3.55-59.

[9] M. A. Alghifari, H. R. Ngemba, J. Widjaja, S. Hendra, M. Y. Pusadan, and Y. Y. Joefrie, “Identification of the Snail Oncomelania hupensis Lindoensis as Schistotomiasis Host Using CNN,” Adv. Sustain. Sci. Eng. Technol., vol. 5, no. 3, Aug. 2023, doi: 10.26877/asset.v5i3.17195.

[10] N. A. Sundari, R. Magdalena, and S. Saidah, “Klasifikasi Jenis Kulit Wajah Menggunakan Metode Covolutional Neural Network (CNN) Efficientnet-B0,” eProceedings Eng., vol. 8, no. 6, pp. 3180–3187, 2022, Accessed: Oct. 01, 2024. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/18982

[11] J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2688.

[12] Rexion Alondeo Boimau and Yampi R. Kaesmetan, “Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network (CNN),” Repeater Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 26–34, 2024, doi: 10.62951/repeater.v2i3.81.

[13] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in 36th International Conference on Machine Learning, ICML 2019, May 2019, pp. 10691–10700. [Online]. Available: http://arxiv.org/abs/1905.11946

[14] J. Wang, L. Yang, Z. Huo, W. He, and J. Luo, “Multi-Label Classification of Fundus Images with EfficientNet,” IEEE Access, vol. 8, pp. 212499–212508, 2020, doi: 10.1109/ACCESS.2020.3040275.

[15] Wahyuningsih, G. S. Nugraha, and R. Dwiyansaputra, “Classification of Dental Caries Disease in Tooth Images Using A Comparison of EfficientNet-B0, MobileNetV2, ResNet-50, InceptionV3 Architectures,” J. Tek. Inform., vol. 5, no. 4, pp. 177–185, 2024, doi: 10.52436/jutif.

[16] S. Asy Syifa and I. Amelia Dewi, “Arsitektur Resnet-152 dengan Perbandingan Optimizer Adam dan RMSProp untuk Mendeteksi Penyakit Paru-Paru,” J. MIND J. | ISSN, vol. 7, no. 2, pp. 139–150, 2022, doi: 10.26760/mindjournal.v7i2.139-150.

[17] M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

[18] M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 2, p. 640, Apr. 2021, doi: 10.30865/mib.v5i2.2937.

[19] T. Ma, L. Wu, S. Zhu, and H. Zhu, “Multiclassification Prediction of Clay Sensitivity Using Extreme Gradient Boosting Based on Imbalanced Dataset,” Appl. Sci., vol. 12, no. 3, 2022, doi: 10.3390/app12031143.

Downloads

Published

2025-06-05

How to Cite

[1]
M. R. D. P. Lamadjido, R. Laila, M. Y. Pusadan, Y. Yudhaswana, N. T. Lapatta, and H. R. Ngemba, “Utilization of EfficientNet-B0 to Identify Oncomelania Hupensis Lindoensis as a Schistosomiasis Host”, JAIC, vol. 9, no. 3, pp. 784–793, Jun. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.