Utilization of EfficientNet-B0 to Identify Oncomelania Hupensis Lindoensis as a Schistosomiasis Host
DOI:
https://doi.org/10.30871/jaic.v9i3.9058Keywords:
Schistosomiasis, Oncomelania hupensis lindoensis, Convolutional Neural Network (CNN), EfficientNet-B0Abstract
Schistosomiasis caused by the Schistosoma japonicum worm is a significant health problem in Indonesia, especially in endemic areas such as the Napu Plateau and Bada Plateau. The main problem in controlling this disease is the difficulty in rapid and accurate identification of Oncomelania hupensis lindoensis snails as intermediate hosts of the parasite. This research aims to develop an artificial intelligence-based system that can efficiently identify the snail species. The stages of this research include collecting snail image data from the Central Sulawesi Provincial Health Office, consisting of 2100 images covering seven snail species, then processed through preprocessing and augmentation stages. The model applied was EfficientNet-B0. The results showed that the EfficientNet-B0 model achieved 98.80% training accuracy and 98.33% validation accuracy. Confusion matrix testing showed good performance, with an accuracy of 98% and for the species Oncomelania hupensis lindoensis had a recall of 93%, precision of 100%, F1-score of 97%, and the resulting AUC value of 99.7%. This research successfully developed an efficient identification system, which is expected to help health surveillance personnel in accelerating the identification process of schistosomiasis intermediate hosts.
Downloads
References
[1] N. B. Rasiman and L. S. Sampali, “Pengetahuan dan Sikap Masyarakat Dalam Upaya Pencegahan Penyakit Schistosomiasis di Puskesmas Wuasa Kabupaten Poso,” Husada Mahakam J. Kesehat., vol. 4, no. 7, p. 404, Jan. 2019, doi: 10.35963/hmjk.v4i7.142.
[2] A. Nurwidayati, P. P. Frederika, and M. Sudomo, “Fluktuasi Schistosomiasis di Daerah Endemis Provinsi Sulawesi Tengah Tahun 2011-2018,” Bul. Penelit. Kesehat., vol. 47, no. 3, pp. 199–206, Dec. 2019, doi: 10.22435/bpk.v47i3.1276.
[3] Vera Diana Towidjojo, Alya Shafira Nurhafizhah, and Sutrisnawati Mardin, “Faktor-Faktor yang Berhubungan dengan Perilaku Pencegahan Schistosomiasis pada Masyarakat Desa Kaduwaa Napu Kabupaten Poso,” Promot. J. Kesehat. Masy., vol. 13, no. 1, pp. 22–27, Jun. 2023, doi: 10.56338/promotif.v13i1.3719.
[4] W. Halim and P. Mudjihartono, “Kecerdasan Buatan dalam Teknologi Kedokteran: Survey Paper,” vol. 2, no. 1, 2022.
[5] U. S. Rahmadhani and N. L. Marpaung, “Klasifikasi Jamur Berdasarkan Genus Dengan Menggunakan Metode CNN,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 169–173, May 2023, doi: 10.30591/jpit.v8i2.5229.
[6] F. N. Cahya, N. Hardi, D. Riana, and S. Hadiyanti, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN),” SISTEMASI, vol. 10, no. 3, p. 618, Sep. 2021, doi: 10.32520/stmsi.v10i3.1248.
[7] A. Kanaya Putri and A. Silvia Handayani, “Penerapan Arsitektur EfficientNet Untuk Pembuatan Model Algoritma Convolutional Neural Network Pada Klasifikasi Bahasa Isyarat,” Technol. Sci., vol. 6, no. 2, 2024, doi: 10.47065/bits.v6i2.5592.
[8] R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, doi: 10.24853/justit.12.3.55-59.
[9] M. A. Alghifari, H. R. Ngemba, J. Widjaja, S. Hendra, M. Y. Pusadan, and Y. Y. Joefrie, “Identification of the Snail Oncomelania hupensis Lindoensis as Schistotomiasis Host Using CNN,” Adv. Sustain. Sci. Eng. Technol., vol. 5, no. 3, Aug. 2023, doi: 10.26877/asset.v5i3.17195.
[10] N. A. Sundari, R. Magdalena, and S. Saidah, “Klasifikasi Jenis Kulit Wajah Menggunakan Metode Covolutional Neural Network (CNN) Efficientnet-B0,” eProceedings Eng., vol. 8, no. 6, pp. 3180–3187, 2022, Accessed: Oct. 01, 2024. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/18982
[11] J. Sanjaya and M. Ayub, “Augmentasi Data Pengenalan Citra Mobil Menggunakan Pendekatan Random Crop, Rotate, dan Mixup,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, Aug. 2020, doi: 10.28932/jutisi.v6i2.2688.
[12] Rexion Alondeo Boimau and Yampi R. Kaesmetan, “Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network (CNN),” Repeater Publ. Tek. Inform. dan Jar., vol. 2, no. 3, pp. 26–34, 2024, doi: 10.62951/repeater.v2i3.81.
[13] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” in 36th International Conference on Machine Learning, ICML 2019, May 2019, pp. 10691–10700. [Online]. Available: http://arxiv.org/abs/1905.11946
[14] J. Wang, L. Yang, Z. Huo, W. He, and J. Luo, “Multi-Label Classification of Fundus Images with EfficientNet,” IEEE Access, vol. 8, pp. 212499–212508, 2020, doi: 10.1109/ACCESS.2020.3040275.
[15] Wahyuningsih, G. S. Nugraha, and R. Dwiyansaputra, “Classification of Dental Caries Disease in Tooth Images Using A Comparison of EfficientNet-B0, MobileNetV2, ResNet-50, InceptionV3 Architectures,” J. Tek. Inform., vol. 5, no. 4, pp. 177–185, 2024, doi: 10.52436/jutif.
[16] S. Asy Syifa and I. Amelia Dewi, “Arsitektur Resnet-152 dengan Perbandingan Optimizer Adam dan RMSProp untuk Mendeteksi Penyakit Paru-Paru,” J. MIND J. | ISSN, vol. 7, no. 2, pp. 139–150, 2022, doi: 10.26760/mindjournal.v7i2.139-150.
[17] M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.
[18] M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 2, p. 640, Apr. 2021, doi: 10.30865/mib.v5i2.2937.
[19] T. Ma, L. Wu, S. Zhu, and H. Zhu, “Multiclassification Prediction of Clay Sensitivity Using Extreme Gradient Boosting Based on Imbalanced Dataset,” Appl. Sci., vol. 12, no. 3, 2022, doi: 10.3390/app12031143.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Moh. Raihan Dirga Putra Lamadjido, Rahmah Laila, Syahrullah Syahrullah, Ryfial Azhar, Nouval Trezandy Lapatta, Hajra Rasmita Ngemba

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).