Implementation of ResNet-50-Based Convolutional Neural Network For Mobile Skin Cancer Classification
DOI:
https://doi.org/10.30871/jaic.v9i4.9696Keywords:
Convolutional Neural Network (CNN), ISIC, Skin Cancer, ResNet-50Abstract
The skin is one of the most important parts of the human body, serving vital functions such as protecting internal organs from injury, shielding against direct bacterial exposure, regulating body temperature, and more. However, the skin is also susceptible to diseases, one of which is skin cancer. Skin cancer can be extremely dangerous if not treated promptly, as it can lead to death. Therefore, early detection is crucial. This study proposes a technology-based solution by classifying skin cancer using a convolutional neural network (CNN) with a ResNet50 architecture implemented into a mobile application via a REST API using Flask. The HAM10000 dataset, consisting of 10,015 skin lesion images across seven classes, was used for model training. Various testing scenarios were conducted to determine the optimal parameter combination. The best results were achieved with an accuracy of 83.84%, precision and recall of 83%, and an F1-score of 83%, using a training data configuration of 70%, dropout of 0.4, and a batch size of 64. The model implemented in this Android application can perform early detection of skin cancer quickly, practically, and easily accessible to the general public, though healthcare professionals must still supervise it. However, although this model can assist users in making early predictions, the prediction results from this model are only a tool for early detection and do not replace clinical diagnosis by professional medical personnel.2) Figure 8 shows the display for taking pictures through the gallery or camera. Users can choose the image they want to upload from the gallery or the camera to be analysed and predicted by the model.
Downloads
References
[1] D. A. Nurlitasari, R. Magdalena, and R. Y. N. Fu’adah, “Analisis Performansi Sistem Klasifikasi Kanker Kulit Menggunakan Convolutional Neural Network,” Journal Of Electrical And System Control Engineering, vol. 5, no. 2, pp. 91–99, Feb. 2022, doi: 10.31289/jesce.v5i2.5691.
[2] Nur Alyyu, “Klasifikasi Kanker Kulit Ganas Dan Jinak Menggunakan Metode Convolutional Neural Network,” Dec. 2022. [Online]. Available: https://www.kaggle.com/fanconic/skin-cancer-
[3] Q. Aina Fitroh, “Deep Transfer Learning untuk Meningkatkan Akurasi Klasifikasi pada Citra Dermoskopi Kanker Kulit,” 2023.
[4] S. Sa’idah, I. Putu, Y. Nugraha Suparta, and E. Suhartono, “Modifikasi Convolutional Neural Network Arsitektur GoogLeNet dengan Dull Razor Filtering untuk Klasifikasi Kanker Kulit,” 2022.
[5] A. Michaelangelo Manurung, I. Santoso, and E. R. Subhiyakto, “The Application of Deep Learning for Skin Disease Classification Using the EfficientNet-B1 Model,” 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
[6] R. Agustina, R. Magdalena, And N. K. C. Pratiwi, “Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 446, Apr. 2022, doi: 10.26760/elkomika.v10i2.446.
[7] J. T. Sinaga, H. A. Faudyta, and E. R. Subhiyakto, “Klasifikasi Kanker Kulit menggunakan Convolutional Neural Network dengan Optimasi Arsitektur,” Building of Informatics, Technology and Science (BITS), vol. 6, no. 3, Dec. 2024, doi: 10.47065/bits.v6i3.6141.
[8] A. W. Kosman, Y. Wahyuningsih, and F. Mahendrasusila, “Pengujian Metode Inception V3 dalam Mengidentifikasi Penyakit Kanker Kulit,” Jurnal Teknologi Informatika dan Komputer, vol. 10, no. 1, pp. 132–142, Mar. 2024, doi: 10.37012/jtik.v10i1.1940.
[9] F. Dartiko, R. J. Pradana, R. E. Sari, W. Syahputra, W. Kz Oktoeberza, and A. W. Artikel, “Klasifikasi Kanker Kulit Berbasis CNN dengan Metode Hybrid Preprocessing INFO ARTIKEL ABSTRAK”, doi: 10.18196/mt.v5i.
[10] M. E. A. R. Ricky Yohannes, “Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM,” pp. 133–144, Apr. 2022.
[11] D. A. Alfananda and S. R. Nudin, “Implementasi Metode Convolutional Neural Network Dan Resnet Untuk Mendiagnosis Penyakit Kanker Kulit Berbasis Website.”
[12] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539ï.
[13] J. Gu et al., “Recent Advances in Convolutional Neural Networks,” Dec. 2015, [Online]. Available: http://arxiv.org/abs/1512.07108
[14] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Aug. 01, 2018, Springer Verlag. Doi: 10.1007/s13244-018-0639-9.
[15] Y.-L. Boureau, J. Ponce, J. P. Fr, and Y. Lecun, “A Theoretical Analysis of Feature Pooling in Visual Recognition,” 2010.
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks.” [Online]. Available: http://code.google.com/p/cuda-convnet/
[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.” [Online]. Available: http://image-net.org/challenges/LSVRC/2015/
[18] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimisation,” Dec. 2014, [Online]. Available: http://arxiv.org/abs/1412.6980
[19] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On Large-Batch Training for Deep Learning: Generalisation Gap and Sharp Minima,” Sep. 2016, [Online]. Available: http://arxiv.org/abs/1609.04836
[20] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” 2014.
[21] R. Y. Azhari, “Technology and Informatics Insight Journal Web Service Framework: Flask dan FastAPI,” 2022, [Online]. Available: https://jurnal.universitasputrabangsa.ac.id/index.php/tiij
[22] R. Nandang Pratama and Y. A. Susetyo, “Implementasi Python API dengan Framework Flask sebagai Cloud Run Service Untuk Proses Update di PT. XYZ,” 2024.
[23] M. S. Mustaqbal, R. F. Firdaus, and H. Rahmadi, “Pengujian Aplikasi Menggunakan Black Box Testing Boundary Value Analysis (Studi Kasus : Aplikasi Prediksi Kelulusan SNMPTN),” 2015.
[24] B. B. Sasongko, F. Malik, F. Ardiansyah, A. F. Rahmawati, F. Dharma Adhinata, and D. P. Rakhmadani, “Pengujian Blackbox Menggunakan Teknik Equivalence Partitions pada Aplikasi Petgram Mobile,” Purwokerto, May 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Asriani Asriani, Nouval Trezandy Lapatta, Deny Wiria Nugraha, Amriana Amriana, Wirdayanti Wirdayanti

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








