Myopia Identification by Fundus Photo Image Classification Using Convolutional Neural Network
DOI:
https://doi.org/10.30871/jaic.v9i5.10624Keywords:
CNN, Classification, Deep Learning, EfficientNet-B0, MyopiaAbstract
Myopia is a significant vision problem worldwide, requiring early detection to prevent further damage. This study aims to develop an image classification model using a Convolutional Neural Network (CNN) to identify myopia based on fundus images. The dataset used was 124,749 fundus images, divided into 80% for training and 20% for testing. The applied architecture was EfficientNetB0, chosen for its ability to achieve high performance with efficient computation. Experimental results showed that this model successfully achieved a classification accuracy of 97% in distinguishing between myopic and non-myopic images. These findings demonstrate the potential of CNN, especially EfficientNetB0, as a diagnostic tool for automatic myopia identification, which can accelerate the detection process and improve the accuracy of clinical diagnosis.
Downloads
References
[1] J. Ilmiah Kesehatan Sandi Husada, S. Faktor Risiko Kelainan Miopia Di Rumah Sakit Pertamina Bintang Amin, T. Lestari, T. Triwahyuni, and R. Syuhada, “Risk Factors for Myopia Abnormalities at the Bintang Amin Pertamina Hospital,” Juni, vol. 11, no. 1, pp. 305–312, 2020, doi: 10.35816/jiskh.v10i2.275.
[2] A. Sufina Ginting and E. Suhaymi, “Artikel Penelitian Dampak Penggunaan Gadget Terhadap Kejadian Miopia Siswa-Siswi Madrasah Aliyah Negeri 2 Langkat Tahun 2022,” vol. 5, 2024, [Online]. Available: https://jurnal.umsu.ac.id/index.php/JPH
[3] X. Zou et al., “Relationship between dry eye disease and myopia: A systematic review and meta-analysis,” Heliyon, vol. 10, no. 19, Oct. 2024, doi: 10.1016/j.heliyon.2024.e38674.
[4] A. Saputra, F. Doringin, M. Wahyu Budiana, A. Refraksi Optisi, and O. Gapopin, “Gambaran Status Refraksi Di Sekolah Smk Kesehatan Letris Indonesia 2 Kota Tangerang Selatan.”
[5] I. S. Primadiani, F. L. Rahmi, S. P. Ilmu, K. Mata, and J. H. Soedarto, “Faktor-Faktor Yang Mempengaruhi Progresivitas Miopia Pada Mahasiswa Kedokteran,” vol. 6, no. 4, pp. 1505–1517, 2017.
[6] S. Atika Salsabila et al., “Literature Review: Hubungan Antara Faktor Genetik, Gaya Hidup, dan Prevalensi Miopia.”
[7] R. Putri Zahra Lubis and M. Sarirah, “Risiko Miopia Terhadap Jarak Pandang Dekat Pada Mahasiswa Fakultas Kedokteran Universitas Muhammadiyah Sumatera Utara,” vol. 5, 2024, [Online]. Available: https://jurnal.umsu.ac.id/index.php/JPH
[8] N. Puspitasari et al., “Gambaran Kelainan Refraksi Pada Siswa/I Di Sdn Padaulun Kecamatan Majalaya Tahun 2024.”
[9] M. Marlina Simarmata, F. Doringin, N. Aulia Khofifah, and Z. Rahma Aulia, “Upaya Pencegahan Miopia Pada Anak-Anak Sekolah Dalam Rangka Hari Kesehatan Nasional Di Jakarta Convention Center.”
[10] A. P. Sambulele, I. H. M. Najoan, and W. P. Supit, “Gambaran Kejadian Miopia pada Mahasiswa Fakultas Kedokteran Universitas Sam Ratulangi,” Medical Scope Journal, vol. 7, no. 1, pp. 85–90, Jul. 2024, doi: 10.35790/msj.v7i1.55450.
[11] E. Hartati, “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Model Resnet-50.”
[12] A. Sandy Wardhani, F. Tri Anggraeny, and A. Mustika Rizki, “Penerapan Model Hibrida Cnn-Knn Untuk Klasifikasi Penyakit Mata,” 2024.
[13] C. Jatmoko and H. Lestiawan, “Seminar Nasional Riset dan Inovasi Teknologi (SEMNAS RISTEK) 2024 Jakarta,” 2024.
[14] E. F. Nurona Cahya et al., “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network (CNN).” [Online]. Available: http://sistemasi.ftik.unisi.ac.id
[15] M. S. Qulub and S. Agustin, “Indentifikasi Penyakit Mata Dengan Klasifikasi Citra Foto Fundus Mengunakan Convolutional Neural Network (CNN),” 2024
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Giffari Ilham Laksono, Sri Winarno

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








