Classification Vehicle Tire Quality using Convolutional Neural Networks

  • Vila Rusantia Pratiwi Universitas Dian Nuswantoro Semarang
  • Nova Rijati Universitas Dian Nuswantoro Semarang
Keywords: Classification, Vehicle Tires, Convolutional Neural Network

Abstract

Tires are a very important component in a vehicle because they are related to driving safety. Defective tires often cause accidents ranging from minor to fatal accidents. Convolutional Neural Network (CNN) is a type of neural network that is used to detect and recognize objects in an image. CNN can imitate the image recognition system in the human visual cortex, making it suitable for identification and classification of image data. This research aims to develop and evaluate a CNN model that is able to classify vehicle tires as 'defective' or 'good'. Model uses a total of 1856 tire images from kaggle.com and is labeled 'defective' or 'good'. Dataset is split using four different data split ratios (60:40, 70:30, 80:20, and 90:10) to determine the optimal distribution that improves the generalization ability of the model. Model evaluation uses accuracy, precision and recall matrices, which are calculated based on the confusion matrix results from testing on 300 data samples. Research results show that the model achieves the best performance at a split ratio of 80:20, with an accuracy of 76.67%, precision of 77.33%, and recall of 76.32%.

Downloads

Download data is not yet available.

References

A. Ufriandi, “Analisis Tingkat Keausan Terhadap Pemakaian Ban Merek A, B Dan C Menggunakan Ban Standar 90/90-14 46 P,” J. Surya Tek., vol. 8, no. 1, pp. 282–288, Jul. 2021, doi: 10.37859/jst.v8i1.2678.

A. Arthono and V. A. Permana, “Perencanaan Perkerasan Lentur Jalan Raya Menggunakan Metode Analisa Komponen SNI 1732-1989-F Ruas Jalan Raya Mulya Sari Kecamatan Pamanukan Sampai Kecamatan Binong Kabupaten Subang Propinsi Jawa Barat,” J. Komposit, vol. 6, no. 1, p. 41, 2022, doi: 10.32832/komposit.v6i1.6740.

M. Ushuludin, S. F. C. Haviana, and I. M. I. Subroto, “Sistem Deteksi Masker Pada Wajah Menggunakan Convolutional Neural Network Arsitektur VGG16,” Transm. J. Ilm. Tek. Elektro, vol. 25, no. 4, pp. 179–185, Dec. 2023, doi: 10.14710/transmisi.25.4.179-185.

A. Saxena, “An Introduction to Convolutional Neural Networks,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 12, pp. 943–947, Dec. 2022, doi: 10.22214/ijraset.2022.47789.

L. Puspitasari, “Analisa Performance Ban Pada Unit Produksi Overburden Hd-785 Terhadap Produktivitas Tambang Batubara,” KURVATEK, vol. 5, no. 1, pp. 69–79, May 2020, doi: 10.33579/krvtk.v5i1.1775.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629, Aug. 2018, doi: 10.1007/s13244-018-0639-9.

N. Rahmayuna, K. Adi, and R. Kusumaningrum, “Tableware Ceramics Defect Detection Using Morphological Operation Approach,” in 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Dec. 2021, pp. 412–416. doi: 10.1109/ISRITI54043.2021.9702806.

M. Hatami Varjovi, M. F. Talu, and K. Hanbay, “Fabric Defect Detection Using Customized Deep Convolutional Neural Network for Circular Knitting Fabrics,” Türk Doğa ve Fen Derg., vol. 11, no. 3, pp. 160–165, Sep. 2022, doi: 10.46810/tdfd.1108264.

A. L. A. Shidiq, E. SUhartono, and S. Saidah, “Klasifikasi Kecacatan Ban Untuk Mengendalikan Kualitas Produk Menggunakan Model CNN Dengan Arsitektur VGG-16 Classification Of Tire Defect To Control Product Quality Using Cnn Model With VGG-16 Architecture,” e-Proceeding Eng., vol. 8, no. 6, pp. 3216–3225, 2022.

B. Biantoro and Hernadewita, “K-means clustering on quality of radial run out tires,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012122, Feb. 2021, doi: 10.1088/1757-899X/1034/1/012122.

I. E. Hendarawan, Riza Ibnu Adam, and Chaerur Rozikin, “Klasifikasi Retak Ban Kendaraan Menggunakan Arsitektur ResNet50,” SATIN - Sains dan Teknol. Inf., vol. 9, no. 1, pp. 22–32, Jun. 2023, doi: 10.33372/stn.v9i1.902.

Nugroho Febriyanto, Cahya Rahmad, and C. B. Vista, “Deteksi Kerusakan Dan Kelayakan Ban Mobil Berdasarkan Ekstraksi Tekstur Menggunakan Gray Level Cooccurrence Matrix Dengan Metode Jaringan Syaraf Tiruan,” J. Inform. Polinema, vol. 7, no. 4, pp. 27–32, Aug. 2021, doi: 10.33795/jip.v7i4.469.

Hendri Candra Mayana and Desmarita Leni, “Deteksi Kerusakan Ban Mobil Menggunakan Convolutional Neural Network dengan Arsitektur ResNet-34,” J. Surya Tek., vol. 10, no. 2, pp. 842–851, Dec. 2023, doi: 10.37859/jst.v10i2.6336.

A. Nurjati, R. Magdalena, and I. N. A. Ramatryana, “Deteksi Kerusakan Permukaan Ban Pada Angkutan Umum Dengan Metode Local Binary Pattern Dan Klasifikasi Nearest Neighbor,” vol. 3, no. 2, pp. 1986–1993, 2016.

M. F. Herlambang, A. N. Hermana, and K. R. Putra, “Pengenalan Karakter Huruf Braille dengan Metode Convolutional Neural Network,” Syst. Inf. Syst. Informatics J., vol. 6, no. 2, pp. 20–26, Jan. 2021, doi: 10.29080/systemic.v6i2.969.

Published
2024-07-25
How to Cite
[1]
V. Pratiwi and N. Rijati, “Classification Vehicle Tire Quality using Convolutional Neural Networks”, JAIC, vol. 8, no. 1, pp. 213-220, Jul. 2024.
Section
Articles