Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes

  • Bintang Zulfikar Ramadhan Universitas Singaperbangsa Karawang
  • Riza Ibnu Adam Universitas Singaperbangsa Karawang
  • Iqbal Maulana Universitas Singaperbangsa Karawang
Keywords: Sentiment Analysis, Naïve Bayes, E-Commerce

Abstract

The rapid development of E-commerce has given rise to many marketplaces in Indonesia such as Tokopedia, Shopee, Lazada. Tokopedia, Shopee and Lazada applications are applications that help sellers and buyers to make sales and purchase transactions for goods and services. Until now, of the three major E-Commerce applications, around 100 million users have downloaded the three E-Commerce applications. With the launch of some of these applications, it has caused a lot of opinions and criticisms from the public. Based on this, a sentiment analysis of the Naïve Bayes algorithm was carried out to find out how the sentiment of users compares to the E-Commerce application on the Google Play Store. This research uses the Knowledge Discovery in Database (KDD) method which consists of 5 stages, namely data selection, preprocessing, transformation, data mining, and evaluation. The data used is a review of 500 E-Commerce applications per each application. At the data mining stage, it is carried out with 3 scenarios data sharing is 80:20, 70:30 and 60:40. The best results were obtained in scenario 1 (80:20) on the Shopee application using the Naïve Bayes algorithm which resulted in an accuracy of 92%, precision of 92.13%, recall of 98.8% and f1-score of 95.35%.

Downloads

Download data is not yet available.

References

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944

Budiman, A., Yulianto, E., & Saifi, M. (2020). Pengaruh E-Service Quality Terhadap E-Satisfaction Dan E-Loyalty Nasabah Pengguna Mandiri Online. Jurnal Profit|, 14(1), 1–11. Retrieved from https://doi.org/10.21776/ub.profit.2020.014.01.1

Febrianti, Y. M. (2018). Analisis Sentimen Pada Ulasan “Lazada” Berbahasa Indonesia Menggunakan K-Nearest Neighbor (K-Nn) Dengan Perbaikan Kata Menggunakan Jaro Wingker Distance. Universitas Brawijaya, Malang

Fide, S., Suparti, S., & Sudarno, S. (2021). Analisis Sentimen Ulasan Aplikasi Tiktok Di Google Play Menggunakan Metode Support Vector Machine (Svm) Dan Asosiasi. Jurnal Gaussian, 10(3), 346–358. https://doi.org/10.14710/j.gauss.v10i3.32786

Goel, A., Gautam, J., & Kumar, S. (2017). Real time sentiment analysis of tweets using Naive Bayes. Proceedings on 2016 2nd International Conference on Next Generation Computing Technologies, NGCT 2016, (October), 257–261. https://doi.org/10.1109/NGCT.2016.7877424

Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita. Jurnal Informatika, 6(1), 18–22. https://doi.org/10.31311/ji.v6i1.4685

Indrayuni, E. (2019). Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes. Jurnal Khatulistiwa Informatika, 7(1), 29–36. https://doi.org/10.31294/jki.v7i1.1

Kasmi, K., & Candra, A. N. (2017). Penerapan E-Commerce Berbasis Business To Consumers Untuk Meningkatan Penjualan Produk Makanan Ringan Khas Pringsewu. Jurnal AKTUAL, 15(2), 109. https://doi.org/10.47232/aktual.v15i2.27

Manik, G., Ernawati, I., & Nurlaili, I. (2021). Analisis Sentimen Pada Review Pengguna E-Commerce Bidang Pangan Menggunakan Metode Support Vector Machine ( Studi Kasus : Review Sayurbox dan Tanihub pada Google Play ). Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA), (September), 64–74

Rofiqoh, U., Perdana, R. S., & Fauzi, M. A. (2017). Analisis sentimen tingkat kepuasan pengguna penyedia layanan telekomunikasi seluler indonesia pada twitter dengan metode support vector machine dan lexicon based features. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(12), 1725–1732. Retrieved from https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/628/246

Siroj, S. M., Arwani, I., & Ratnawati, D. E. (2021). Analisis Sentimen Opini Publik pada Twitter terhadap Efek Pembelajaran Daring di Universitas Brawijaya menggunakan Metode K-Nearest Neighbor. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(7), 3131–3140.

Sirisuriya, S. (2015). A Comparative Study on Web Scraping. 8th International Research Conference, KDU, 135–140.

Published
2022-12-12
How to Cite
[1]
B. Ramadhan, R. Adam, and I. Maulana, “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes”, JAIC, vol. 6, no. 2, pp. 220-225, Dec. 2022.
Section
Articles

Most read articles by the same author(s)