Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine

  • Tiara Safitri Universitas Singaperbangsa Karawang
  • Yuyun Umaidah Universitas Singaperbangsa Karawang
  • Iqbal Maulana Universitas Singaperbangsa Karawang
Keywords: Sentiment Analysis, Support Vector Machine, Twitter, BTS


Twitter is often used as a source of public opinion and sentiment data for analysis, where the data can be used to understand public opinion about a topic. Sentiment analysis is widely used in various fields, one of which is in the marketing field. a company can carry out a sentiment analysis of the public figures they want to make Brand Ambassadors (BA), which later these sentiments can be taken into consideration for them to be able to determine the BA of their products. Sentiment analysis can also be used to distinguish the attitude of customers, users or followers towards a brand, topic, or product with the help of their reviews. Based on this, this study will analyze the sentiments of Twitter users towards music group BTS, using the Knowledge Discovery Database (KDD) research methodology, with 5 stages namely Data Selection, Data Preprocessing, Data Transformation, Text Mining and Evaluation. By using the Support Vector Machine (SVM) algorithm with a linear kernel, this study will do 3 scenarios with the distribution of training data and testing data 90:10 in scenario 1, 80:20 in scenario 2, and 70:30 in scenario 3. Confusion Matrix is used to evaluate the performance of the algorithm used and the results show that the best performance of the model formed is in scenario 1 and scenario 2.


Download data is not yet available.


Ankit, & Saleena, N. (2018). An Ensemble Classification System for Twitter Sentiment Analysis. Procedia Computer Science, 132(ICCIDS), 937–946.

Statista Research Department. (2022, January 28). Twitter: number of worldwide users 2019-2024. Statista. Retrieved March 10, 2022, from

Yue, L., Chen, W., Li, X., Zuo, W., & Yin, M. (2019). A survey of sentiment analysis in social media. Knowledge and Information Systems, 60(2), 617–663.

Untawale, T. M., & Choudhari, G. (2019). Implementation of sentiment classification of movie reviews by supervised machine learning approaches. Proceedings of the 3rd International Conference on Computing Methodologies and Communication, ICCMC 2019, Iccmc, 1197–1200.

Lim, R. L., Rosales, M. Z., Salazar, A. T., & Pantoja, E. (2022). Perception of Filipino Skincare Product Users on the Effectiveness of Social Media Influencers vs Celebrity Endorsers as Brand Ambassadors. Journal of Business and Management Studies, 4(1), 131–139.

Alkhalifi, Y., Gata, W., Prasetya, A., & Budiawan, I. (2020). Analisis Sentimen Penghapusan Ujian Nasional pada Twitter Menggunakan Support Vector Machine dan Naïve Bayes berbasis Particle Swarm Optimization. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 6(2), 71.

Liani, A. (2020). Analisis Perbandingan Kernel Algoritma Support Vector Machine dalam Mengklasifikasikan Skripsi Teknik Informatika berdasarkan Abstrak. JOINS (Journal of Information System), 5(2), 240–249.

Maulana, R., Rahayuningsih, P. A., Irmayani, W., Saputra, D., & Jayanti, W. E. (2020). Improved Accuracy of Sentiment Analysis Movie Review Using Support Vector Machine Based Information Gain. Journal of Physics: Conference Series, 1641(1). 6596/1641/1/012060.

Kulsumarwati, A., Purnamasari, I., & Darmawan, B. A. (2021). Penerapan SVM dan Information Gain Pada Analisis Sentimen Pelaksanaan Pilkada Saat Pandemi. Jurnal Teknologi Informatika Dan Komputer, 7(2), 101–109.

Xu, J., Zhang, Y., & Miao, D. (2020). Three-way confusion matrix for classification: A measure driven view. Information Sciences, 507, 772–794.

Isnain, A. R., Supriyanto, J., & Kharisma, M. P. Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(2), 121-130.

Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations. Organizational Research Methods, 25(1), 114–146.

Drus, Z., & Khalid, H. (2019). Sentiment analysis in social media and its application: Systematic literature review. Procedia Computer Science, 161, 707–714.

Kim, Y. mi, & Delen, D. (2018). Medical informatics research trend analysis: A text mining approach. Health Informatics Journal, 24(4), 128–134.

Putra, D., & Wibowo, A. (2020). Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes. Prosiding Seminar Nasional Riset Information Science (SENARIS), 2, 84–92.

Stancin, I., & Jovic, A. (2019). An overview and comparison of free Python libraries for data mining and big data analysis. (2019). 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019 - Proceedings, 977–982.

Zuhad, F., & Wilantika, N. (2022). Perbandingan Penggunaan Kamus Normalisasi dalam Analisis Sentimen Berbahasa Indonesia. Jurnal Linguistik Komputasional (JLK), 5(1).

Yogish, D., Manjunath, T. N., & Hegadi, R. S. (2018, December). Review on natural language processing trends and techniques using NLTK. In International Conference on Recent Trends in Image Processing and Pattern Recognition (pp. 589-606). Springer, Singapore.

Setyawati, K. S., Handojo, A., & Palit, H. N. (2021). Aplikasi Sentiment Analysis Terhadap Pelaksanaan Pembelajaran Jarak Jauh Universitas Kristen Petra Dengan Metode Naive Bayes Classifier. Jurnal Infra, 9(1), 169-174.

Averina, A., Hadi, H., & Siswantoro, J. (2022). Analisis Sentimen Multi-Kelas Untuk Film Berbasis Teks Ulasan Menggunakan Model Regresi Logistik. Teknika, 11(2), 123-128.

Pokharel, B. P. (2020). Twitter Sentiment Analysis During Covid-19 Outbreak in Nepal. SSRN Electronic Journal, March, 1–9.

How to Cite
T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine”, JAIC, vol. 7, no. 1, pp. 34-41, Jul. 2023.

Most read articles by the same author(s)