Sentiment Analysis Using LSTM Algorithm Regarding Grab Application Services in Indonesia

Authors

  • Akbar Rikzy Gunawan Informatika, Universitas Amikom Yogyakarta
  • Rifda Faticha Alfa Aziza Informatika, Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i2.8696

Keywords:

Sentiment Analysis, User Reviews, Long Short-Term Memory, Bi-Directional LSTM, Multi-Head Attention

Abstract

This study aims to analyze the sentiment of user reviews for the Grab Indonesia application using Long Short-Term Memory (LSTM) algorithms. Two variants of LSTM, namely Stacked LSTM and Bi-Directional LSTM, were compared to determine the most effective model in classifying user review sentiments. Both models were enhanced with Multi-Head Attention mechanisms to capture more complex contextual relationships in sequential data. The data used consists of 2,000 user reviews collected through scraping from the Google Play Store, with sentiment labels of positive and negative. Data preprocessing included labeling, case folding, stopword removal, tokenization, stemming, and the application of the SMOTE technique to address class imbalance. The results show that the Bi-Directional LSTM model achieved the highest validation accuracy of 87%, with an F1-score of 0.90 for the negative class and 0.82 for the positive class, while the Stacked LSTM recorded an accuracy of 84%, with an F1-score of 0.87 for the negative class and 0.78 for the positive class. Overall, the Bi-Directional LSTM demonstrated better performance in identifying both negative and positive sentiments, providing a good balance between precision and recall. This study proves that Bi-Directional LSTM with Multi-Head Attention can improve sentiment analysis performance on user reviews of digital applications, with potential applications in various other platforms.

Downloads

Download data is not yet available.

References

[1] W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 3, p. 1018, Jul. 2021, doi: 10.30865/mib.v5i3.3111.

[2] D. Gibson Nababan et al., “Merancang Analisis Sentimen Berdasarkan Pendapat Pengguna Aplikasi Grab Dengan Menggunakan Bahasa Pemrograman Python,” 2024.

[3] Hermanto, A. Y. Kuntoro, T. Asra, E. B. Pratama, L. Effendi, and R. Ocanitra, “Gojek and Grab User Sentiment Analysis on Google Play Using Naive Bayes Algorithm and Support Vector Machine Based Smote Technique,” J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012102.

[4] D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” J. Manaj. Inform., vol. 12, no. 2, pp. 89–99, Sep. 2022, doi: 10.34010/jamika.v12i2.7764.

[5] R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 42–48, 2023, doi: 10.54914/jtt.v9i1.609.

[6] G. K. Locarso, “Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan Nbc,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 6, no. 2, pp. 353–361, 2022, doi: 10.59697/jtik.v6i2.207.

[7] J. Nurvania, Jondri, and K. Muslim Lhaksamana, “Analisis Sentimen Pada Ulasan di TripAdvisor Menggunakan Metode Long Short-Term Memory (LSTM),” e-Proceeding Eng., vol. 8, no. 4, pp. 4124–4135, 2021.

[8] D. Sintia Amelia, N. Cahyana Aminuallah, and S. Informasi, “Teks Dan Analisis Sentimen Pada Chat Grup Whatsapp Menggunakan Long Short Term Memory (Lstm),” J. Teknol. Terkini, vol. 3, no. 2, p. 1, 2023, [Online]. Available: http://teknologiterkini.org/index.php/terkini/article/view/354

[9] K. S. Witanto, N. A. Sanjaya ER, A. E. Karyawati, I. G. A. G. A. Kadyanan, I. K. G. Suhartana, and L. G. Astuti, “Implementasi LSTM Pada Analisis Sentimen Review Film Menggunakan Adam Dan RMSprop Optimizer,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 10, no. 4, p. 351, 2022, doi: 10.24843/jlk.2022.v10.i04.p05.

[10] E. I. Setiawan and I. Lestari, “Stance Classification Pada Berita Berbahasa Indonesia Berbasis Bidirectional LSTM,” J. Intell. Syst. Comput., vol. 3, no. 1, pp. 41–48, 2021, doi: 10.52985/insyst.v3i1.148.

[11] M. H. Al-Areef and K. Saputra S, “Analisis Sentimen Pengguna Twitter Mengenai Calon Presiden Indonesia Tahun 2024 Menggunakan Algoritma LSTM,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 22, no. 2, p. 270, 2023, doi: 10.53513/jis.v22i2.8680.

[12] A. D. Milniadi and N. O. Adiwijaya, “Analisis Perbandingan Model Arima Dan Lstm Dalam Peramalan Harga Penutupan Saham (Studi Kasus : 6 Kriteria Kategori Saham Menurut Peter Lynch),” SIBATIK J. J. Ilm. Bid. Sos. Ekon. Budaya, Teknol. dan Pendidik., vol. 2, no. 6, pp. 1683–1692, 2023, doi: 10.54443/sibatik.v2i6.798.

[13] M. Sharaf, E. E. D. Hemdan, A. El-Sayed, and N. A. El-Bahnasawy, An efficient hybrid stock trend prediction system during COVID-19 pandemic based on stacked-LSTM and news sentiment analysis, vol. 82, no. 16. Multimedia Tools and Applications, 2023. doi: 10.1007/s11042-022-14216-w.

[14] M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5120–5127, 2021, [Online]. Available: http://j-ptiik.ub.ac.id

[15] M. R. F. Kamarula and N. Rochmawati, “Perbandingan CNN dan Bi-LSTM pada Analisis Sentimen dan Emosi Masyarakat Indonesia Di Media Sosial Twitter Selama Pandemik Covid-19 yang Menggunakan Metode Word2vec,” J. Informatics Comput. Sci., vol. 04, pp. 219–228, 2022, doi: 10.26740/jinacs.v4n02.p219-228.

[16] Ari Muzakir and Uci Suriani, “Model Deteksi Berita Palsu Menggunakan Pendekatan Bidirectional Long Short-Term Memory (BiLSTM),” J. Comput. Inf. Syst. Ampera, vol. 4, no. 2, pp. 93–105, 2023, [Online]. Available: https://journal-computing.org/index.php/journal-cisa/article/view/397/185

[17] G. A. M. Kukuh Jaluwana, Gusti Made Arya Sasmita, and I Made Agus Dwi Suarjaya, “Analysis of Public Sentiment Towards Goverment Efforts to Break the Chain of Covid-19 Transmission in Indonesia Using CNN and Bidirectional LSTM,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 511–520, 2022, doi: 10.29207/resti.v6i4.4055.

[18] A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 5999–6009, 2017.

[19] R. Merdiansah and A. Ali Ridha, “Sentiment Analysis of Indonesian X Users Regarding Electric Vehicles Using IndoBERT,” J. Ilmu Komput. dan Sist. Inf. (JIKOMSI, vol. 7, no. 1, pp. 221–228, 2024.

[20] R. K. Behera, M. Jena, S. K. Rath, and S. Misra, “Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data,” Inf. Process. Manag., vol. 58, no. 1, 2021, doi: 10.1016/j.ipm.2020.102435.

[21] T. L. Nikmah, M. Z. Ammar, and Y. R. Allatif, “Comparison of LSTM, SVM, and naive bayes for classifying sexual harassment tweets,” J. Soft Comput. Explor., vol. 3, no. 2, pp. 131–137, 2022, doi: 10.52465/joscex.v3i2.85.

Downloads

Published

2025-03-17

How to Cite

[1]
A. R. Gunawan and R. F. Alfa Aziza, “Sentiment Analysis Using LSTM Algorithm Regarding Grab Application Services in Indonesia”, JAIC, vol. 9, no. 2, pp. 322–332, Mar. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.