Analisis Sentimen Pencitraan Perguruan Tinggi di Yogyakarta Menggunakan Metode Naїve Bayes Classifier

  • Y Yohakim Marwanta Universitas Teknologi Digital Indonesia
  • Badiyanto B Universitas Teknologi Digital Indonesia
Keywords: Sentiment Analysis, Twitter, Classification, Naïve Bayes

Abstract

This research utilizes data from Twitter to analyze sentiment in Yogyakarta's universities using the Naïve Bayes Classifier method. The Naive Bayes Classifier method is one of the text classification methods based on the probability of keywords in comparing training and testing documents. The data used consists of tweets in Indonesian language with keywords from the top 10 universities in Yogyakarta based on webometrics, as well as four other relevant keywords about Yogyakarta that are frequently searched through Google. From the conducted research, there are 1710 data collected from Twitter, which are used for classification and categorized into 3 labels: positive, negative, and neutral. The data is divided into 70% for training and 30% for testing randomly. The result of sentiment analysis classification from the test data shows that 82.1% of the data is categorized as neutral, 14.8% as positive, and 3.1% as negative, with an accuracy value of 73%.

Downloads

Download data is not yet available.

References

M. Kirana, N. Perkasa, M. Lubis, and M. Fani, “Visualisasi Kualitas Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter”, JAIC, vol. 3, no. 1, pp. 23-32, May 2019.

D. Vonega, A. Fadila, and D. Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024”, JAIC, vol. 6, no. 2, pp. 129-135, Nov. 2022.

B. Ramadhan, R. Adam, and I. Maulana, “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes”, JAIC, vol. 6, no. 2, pp. 220-225, Dec. 2022.

D. Kurniawan, A. Dzikri, and R. Permatasari, “E-Market Development for Fishermen and SMEs to Support Local Products in Hinterland Batam,” presented at the Proceedings of the 2nd Multidisciplinary International Conference, MIC 2022, 12 November 2022, Semarang, Central Java, Indonesia, Feb. 2023. Accessed: Jul. 26, 2023. [Online]. Available: https://eudl.eu/doi/10.4108/eai.12-11-2022.2327385.

R. Nooraeni, A. B. Safiruddin, A. F. Afifah, K. D. Agung, and N. N. Rosyad, “Analisis Sentimen Publik terhadap Sistem Zonasi Sekolah Menggunakan Data Twitter dengan Metode Naïve Bayes Classification,” Fakt. Exacta, vol. 12, no. 4, Art. no. 4, Feb. 2020, doi: 10.30998/faktorexacta.v12i4.5205.

Pamungkas, Dyarsa Singgih., Noor Ageng Setiyono dan Erlin Dolphina. 2015. Analisis Sentimen Pada Sosial Media Twitter Menggunakan Naïve Bayes Califier Terhadap Kata Kunci “Kurikulum 2013”. Techno.COM, (hal. 299-314). Semarang: Universitas Dian Nuswantoro

F. Pramono, Didi Rosiyadi, and Windu Gata, “Integrasi N-gram, Information Gain, Particle Swarm Optimation di Naïve Bayes untuk Optimasi Sentimen Google Classroom ”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 3, no. 3, pp. 383 - 388, Dec. 2019.

R. S. Buana, W. Gata, A. Z. P. Widodo, H. . Setiawan, and K. Hilyati, “Analisis Sentimen pada Komen Twitter Pawang Hujan Mandalika dengan Support Vector Machine (SVM) dan Naïve Bayes”, jtik, vol. 7, no. 2, pp. 194–200, Apr. 2023.

Scikit-learn depelovers. 2020. Sklearn. feature_extraction. text.TfidfTransformer. Tersedia https://scikit-learn.org/stable/ modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer

T. Amanattullah, H. Widyastuti, and F. Sari, “Identifikasi Fitur Laptop beserta Orientasinya dengan Metode Apriori dan Lexicon-Based”, JAIC, vol. 1, no. 2, pp. 33-37, Dec. 2017.

A. Sholihin, H. Haviluddin, N. Puspitasari, M. Wati, and I. Islamiyah, “Analisis Penyakit Difteri Berbasis Twitter Menggunakan Algoritma Naïve Bayes,” Sains Apl. Komputasi Dan Teknol. Inf., vol. 1, no. 1, Art. no. 1, May 2019, doi: 10.30872/jsakti.v1i1.2215.

T. E. Tarigan, R. C. Buwono, and S. Redjeki, “Extraction Opinion of Social Media in Higher Education Using Sentiment Analysis”, bit-Tech, vol. 2, no. 1, pp. 11–19, Oct. 2019.

A. P. Wijaya and H. A. Santoso, “Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government,” J. Appl. Intell. Syst., vol. 1, no. 1, Art. no. 1, 2016, doi: 10.33633/jais.v1i1.1032.

Published
2023-07-31
How to Cite
[1]
Y. Marwanta and B. B, “Analisis Sentimen Pencitraan Perguruan Tinggi di Yogyakarta Menggunakan Metode Naїve Bayes Classifier”, JAIC, vol. 7, no. 1, pp. 21-27, Jul. 2023.
Section
Articles