Analisis Sentimen Pencitraan Perguruan Tinggi di Yogyakarta Menggunakan Metode Naїve Bayes Classifier
Abstract
This research utilizes data from Twitter to analyze sentiment in Yogyakarta's universities using the Naïve Bayes Classifier method. The Naive Bayes Classifier method is one of the text classification methods based on the probability of keywords in comparing training and testing documents. The data used consists of tweets in Indonesian language with keywords from the top 10 universities in Yogyakarta based on webometrics, as well as four other relevant keywords about Yogyakarta that are frequently searched through Google. From the conducted research, there are 1710 data collected from Twitter, which are used for classification and categorized into 3 labels: positive, negative, and neutral. The data is divided into 70% for training and 30% for testing randomly. The result of sentiment analysis classification from the test data shows that 82.1% of the data is categorized as neutral, 14.8% as positive, and 3.1% as negative, with an accuracy value of 73%.
Downloads
References
M. Kirana, N. Perkasa, M. Lubis, and M. Fani, “Visualisasi Kualitas Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter”, JAIC, vol. 3, no. 1, pp. 23-32, May 2019.
D. Vonega, A. Fadila, and D. Kurniawan, “Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024”, JAIC, vol. 6, no. 2, pp. 129-135, Nov. 2022.
B. Ramadhan, R. Adam, and I. Maulana, “Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes”, JAIC, vol. 6, no. 2, pp. 220-225, Dec. 2022.
D. Kurniawan, A. Dzikri, and R. Permatasari, “E-Market Development for Fishermen and SMEs to Support Local Products in Hinterland Batam,” presented at the Proceedings of the 2nd Multidisciplinary International Conference, MIC 2022, 12 November 2022, Semarang, Central Java, Indonesia, Feb. 2023. Accessed: Jul. 26, 2023. [Online]. Available: https://eudl.eu/doi/10.4108/eai.12-11-2022.2327385.
R. Nooraeni, A. B. Safiruddin, A. F. Afifah, K. D. Agung, and N. N. Rosyad, “Analisis Sentimen Publik terhadap Sistem Zonasi Sekolah Menggunakan Data Twitter dengan Metode Naïve Bayes Classification,” Fakt. Exacta, vol. 12, no. 4, Art. no. 4, Feb. 2020, doi: 10.30998/faktorexacta.v12i4.5205.
Pamungkas, Dyarsa Singgih., Noor Ageng Setiyono dan Erlin Dolphina. 2015. Analisis Sentimen Pada Sosial Media Twitter Menggunakan Naïve Bayes Califier Terhadap Kata Kunci “Kurikulum 2013”. Techno.COM, (hal. 299-314). Semarang: Universitas Dian Nuswantoro
F. Pramono, Didi Rosiyadi, and Windu Gata, “Integrasi N-gram, Information Gain, Particle Swarm Optimation di Naïve Bayes untuk Optimasi Sentimen Google Classroom ”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 3, no. 3, pp. 383 - 388, Dec. 2019.
R. S. Buana, W. Gata, A. Z. P. Widodo, H. . Setiawan, and K. Hilyati, “Analisis Sentimen pada Komen Twitter Pawang Hujan Mandalika dengan Support Vector Machine (SVM) dan Naïve Bayes”, jtik, vol. 7, no. 2, pp. 194–200, Apr. 2023.
Scikit-learn depelovers. 2020. Sklearn. feature_extraction. text.TfidfTransformer. Tersedia https://scikit-learn.org/stable/ modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer
T. Amanattullah, H. Widyastuti, and F. Sari, “Identifikasi Fitur Laptop beserta Orientasinya dengan Metode Apriori dan Lexicon-Based”, JAIC, vol. 1, no. 2, pp. 33-37, Dec. 2017.
A. Sholihin, H. Haviluddin, N. Puspitasari, M. Wati, and I. Islamiyah, “Analisis Penyakit Difteri Berbasis Twitter Menggunakan Algoritma Naïve Bayes,” Sains Apl. Komputasi Dan Teknol. Inf., vol. 1, no. 1, Art. no. 1, May 2019, doi: 10.30872/jsakti.v1i1.2215.
T. E. Tarigan, R. C. Buwono, and S. Redjeki, “Extraction Opinion of Social Media in Higher Education Using Sentiment Analysis”, bit-Tech, vol. 2, no. 1, pp. 11–19, Oct. 2019.
A. P. Wijaya and H. A. Santoso, “Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government,” J. Appl. Intell. Syst., vol. 1, no. 1, Art. no. 1, 2016, doi: 10.33633/jais.v1i1.1032.
Copyright (c) 2023 Y Yohakim Marwanta, Badiyanto B
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).