Tourist Perceptions Through Sentiment Analysis to Support Tourism Development in Maluku Province

  • Hennie Tuhuteru Universitas Kristen Indonesia Maluku
  • Leonardo Petra Refialy Universitas Kristen Indonesia Maluku
  • Marlisa Laturake Universitas Kristen Indonesia Maluku
  • Shyrel Gildion Pattirane Universitas Kristen Indonesia Maluku
Keywords: Sentiment analysis, Tourist perceptions, Social media data, Maluku Province

Abstract

Tourist perceptions obtained by sentiment analysis can provide an overview of tourism development in Maluku Province. This study aims to determine the perception of tourists towards destinations in Maluku based on the results of sentiment analysis. This research uses a quantitative approach by analyzing scrapping and snipping data from Facebook, Instagram, TikTok, Google Maps Review, and Trip Advisor. Sentiment analysis is done by comparing the accuracy level of the Random Forest, Naïve Bayes, and Support Vector Machine classification models. The results of the comparison of the three methods show that Random Forest has the best accuracy rate, which is 85%. The results of sentiment analysis both on the entire dataset and the results of analysis per district/city show that tourists' perceptions of tourist destinations in Maluku can be said to be good because they are dominated by negative sentiments. The existence of negative and neutral sentiments indicates that there is a need for improvement and improvement in the quality of tourist services in terms of human resources, transportation, accommodation, and infrastructure facilities.

Downloads

Download data is not yet available.

References

Google, “Data Google Trends,” Google Trends, 2023. https://trends.google.co.id/trends/explore?cat=67&date=today 5-y&q=%2Fm%2F0djdm&hl=id (diakses Apr 09, 2023).

Pemerintah Daerah Provinsi Maluku, “RPJMD: Rencana Pembangunan Jangka Menengah Daerah Provinsi Maluku Tahun 2019-2024,” Ambon, 2019. [Daring]. Tersedia pada: https://malukuprov.go.id/pdf_import/RPJMD_2019-2024.pdf.

Bidang Neraca Wilayah & Analisis Statistik, Analisis Sektor Unggulan Provinsi Maluku 2022. Ambon: Badan Pusat Statistik Provinsi Maluku, 2022.

A. Liu, Y. R. Kim, dan H. Song, “Toward an accurate assessment of tourism economic impact: A systematic literature review,” Ann. Tour. Res. Empir. Insights, vol. 3, no. 2, hal. 100054, 2022, doi: 10.1016/j.annale.2022.100054.

F. Hendriks, “Provinsi Maluku Dalam Angka 2023,” BPS Provinsi Maluku, Ambon, 2023. [Daring]. Tersedia pada: https://maluku.bps.go.id/publication/2023/02/28/5e8944e1ca42a5199c4c577e/provinsi-maluku-dalam-angka-2023.html.

F. Hendriks, “Provinsi Maluku Dalam Angka 2022,” BPS Provinsi Maluku, Ambon, 2022. [Daring]. Tersedia pada: https://maluku.bps.go.id/publication/2022/02/25/2a70c4b4b14c5150791bad4c/provinsi-maluku-dalam-angka-2022.html.

A. J. Leatemia dan F. Hendriks, “Provinsi Maluku Dalam Angka 2021,” BPS Provinsi Maluku, Ambon, 2021. [Daring]. Tersedia pada: https://maluku.bps.go.id/publication/2021/02/26/972e698a6e9a5506eabfdf7d/provinsi-maluku-dalam-angka-2021.html.

A. J. Leatemia dan F. Hendriks, “Provinsi Maluku Dalam Angka 2020,” BPS Provinsi Maluku, Ambon, 2020. [Daring]. Tersedia pada: https://maluku.bps.go.id/publication/2020/05/19/afc99b2033e3746f260dbbb1/provinsi-maluku-dalam-angka-2020.html.

Rokom, “Indonesia Bersiap Menuju Endemi,” Sehat Negeriku, Jakarta, 2022.

D. Shabrina, “Status Kedaruratan Covid-19 Selama Mudik Masih Berlanjut,” Media Indonesia, Apr 03, 2023.

C. Liu dan H. T. Chong, “Social media engagement and impacts on post-COVID-19 travel intention for adventure tourism in New Zealand,” J. Outdoor Recreat. Tour., no. February, hal. 100612, 2023, doi: 10.1016/j.jort.2023.100612.

Y. Yuan, C. S. Chan, S. Eichelberger, H. Ma, dan B. Pikkemaat, “The effect of social media on travel planning process by Chinese tourists: the way forward to tourism futures,” J. Tour. Futur., hal. 1–20, 2022, doi: 10.1108/JTF-04-2021-0094.

K. Puh dan M. Bagić Babac, “Predicting sentiment and rating of tourist reviews using machine learning,” J. Hosp. Tour. Insights, 2022, doi: 10.1108/JHTI-02-2022-0078.

S. Mukhopadhyay, T. Jain, S. Modgil, dan R. K. Singh, “Social media analytics in tourism: a review and agenda for future research,” in Benchmarking An International Journal, vol. ahead-of-p, no. ahead-of-print, Singapore: Springer Nature Singapore Pte Ltd, 2022, hal. 193–236.

S. Kemp, “Digital 2023 Global Overview Report,” Singapore, 2023. [Daring]. Tersedia pada: https://www.slideshare.net/DataReportal/digital-2023-global-overview-report-summary-version-january-2023-v02.

Y. Li, Z. Lin, dan S. Xiao, “Using social media big data for tourist demand forecasting: A new machine learning analytical approach,” J. Digit. Econ., vol. 1, no. 1, hal. 32–43, 2022, doi: 10.1016/j.jdec.2022.08.006.

M. Thelwall, “Sentiment Analysis for Tourism,” in Big Data and Innovation in Tourism, Travel, and Hospitality: Managerial Approaches, Techniques, and Applications, Springer Singapore, 2019, hal. 1–223.

P. Savci dan B. Das, “Prediction of the customers’ interests using sentiment analysis in e-commerce data for comparison of Arabic, English, and Turkish languages,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 3, hal. 227–237, 2023, doi: 10.1016/j.jksuci.2023.02.017.

H. Nankani, H. Dutta, H. Shrivastava, P. V. N. . R. Krishna, D. Mahata, dan R. R. Shah, “Multilingual Sentiment Analysis,” Deep Learn. Approaches Sentim. Anal., hal. 193–236, 2020, doi: https://doi.org/10.1007/978-981-15-1216-2.

I. F. Putra dan A. Purwarianti, “Improving Indonesian Text Classification Using Multilingual Language Model,” hal. 0–4, 2020.

E. Fernandes, S. Moro, dan P. Cortez, “Data Science, Machine learning and big data in Digital Journalism: A survey of state-of-the-art, challenges and opportunities,” Expert Syst. Appl., vol. 221, no. September 2021, hal. 119795, 2023, doi: 10.1016/j.eswa.2023.119795.

X. Shu dan Y. Ye, “Knowledge Discovery: Methods from data mining and machine learning,” Soc. Sci. Res., vol. 110, no. October 2022, hal. 102817, 2023, doi: 10.1016/j.ssresearch.2022.102817.

S. García-Méndez, F. de Arriba-Pérez, A. Barros-Vila, dan F. J. González-Castaño, “Detection of temporality at discourse level on financial news by combining Natural Language Processing and Machine Learning,” Expert Syst. Appl., vol. 197, no. September 2021, hal. 116648, 2022, doi: 10.1016/j.eswa.2022.116648.

J. Atkinson dan A. Escudero, “Evolutionary natural-language coreference resolution for sentiment analysis,” Int. J. Inf. Manag. Data Insights, vol. 2, no. 2, hal. 100115, 2022, doi: 10.1016/j.jjimei.2022.100115.

H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, hal. 7–13, 2020.

H. Tuhuteru dan A. Iriani, “Analisis Sentimen Perusahaan Listrik Negara Cabang Ambon Menggunakan Metode Support Vector Machine dan Naive Bayes Classifier,” J. Inform. J. Pengemb. IT, vol. 3, no. 3, hal. 394–401, 2018, doi: 10.30591/jpit.v3i3.977.

M. J. Denny dan A. Spirling, “Text Preprocessing for Unsupervised Learning: Why It Matters, When It Misleads, and What to Do about It,” Polit. Anal., vol. 26, no. 2, hal. 168–189, 2018, doi: 10.1017/pan.2017.44.

E. Prayitno, T. Suprawoto, dan ..., “Optimasi Hasil Pencarian Pada Web Scrapping Menggunakan Pembobotan Kata Tf-Idf,” J. Innov. Res. Knowl., vol. 1, no. 7, hal. 241–246, 2021, [Daring]. Tersedia pada: https://bajangjournal.com/index.php/JIRK/article/view/822.

A. B. Shaik dan S. Srinivasan, A brief survey on random forest ensembles in classification model, vol. 56. Springer Singapore, 2019.

S. Chen, G. I. Webb, L. Liu, dan X. Ma, “A novel selective naïve Bayes algorithm,” Knowledge-Based Syst., vol. 192, no. xxxx, hal. 105361, 2020, doi: 10.1016/j.knosys.2019.105361.

J. Lin, H. Chen, S. Li, Y. Liu, X. Li, dan B. Yu, “Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier,” Artif. Intell. Med., vol. 98, no. March, hal. 35–47, 2019, doi: 10.1016/j.artmed.2019.07.005.

I. K. Nti, O. Nyarko-Boateng, dan J. Aning, “Performance of Machine Learning Algorithms with Different K Values in K-fold CrossValidation,” Int. J. Inf. Technol. Comput. Sci., vol. 13, no. 6, hal. 61–71, 2021, doi: 10.5815/ijitcs.2021.06.05.

K. O. Fapohunda et al., “Evaluation Of Infectious Diseases Outbreak Among Prisoners Using Machine Learning,” J. Multidiscip. Eng. Sci. Technol., vol. 10, no. 2, hal. 2458–9403, 2023, [Daring]. Tersedia pada: www.jmest.org.

A. Peryanto, A. Yudhana, dan R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, hal. 45–51, 2020, doi: 10.30871/jaic.v4i1.2017.

Published
2024-07-07
How to Cite
[1]
H. Tuhuteru, L. Refialy, M. Laturake, and S. Pattirane, “Tourist Perceptions Through Sentiment Analysis to Support Tourism Development in Maluku Province”, JAIC, vol. 8, no. 1, pp. 119-126, Jul. 2024.
Section
Articles