Taxpayer Awareness Classification Using Decision Tree and Naïve Bayes Methods
Abstract
Land and Building Tax (PBB) has a big influence on a region's PAD. Therefore, regions always strive to increase PBB income as much as possible. Many factors influence the increase in PBB, one of which is public awareness of taxes. Lack of public awareness of taxes causes PBB income to also decrease, and has implications for regional PAD. And conversely, if public awareness of taxes is high, PBB and PAD revenues will also increase. Therefore, a system is needed to measure public awareness of taxes in the region. If public awareness of taxes can be measured, then the relevant agencies can evaluate and map taxpayers in which sub-districts have high or below average awareness. There are several factors that influence taxpayer awareness, including ownership status, tax sector, assessment category, and the number of receivable payments over the past 5 years. By knowing the awareness of taxpayers, the relevant agencies can review the targets for achieving PBB revenue and issue warning letters to taxpayers whose awareness of PBB is lacking. This research uses decision tree and naïve Bayes methods to classify 666,580 datasets obtained from the Cianjur Regency Regional Revenue Management Agency. The stages are carried out by data collection, data preprocessing, training data labeling, classification process, and evaluation. The result of this research is a system that can predict whether taxpayers are aware or not in a sub-district and sub-district or rural area using decision trees and naïve Bayes. The accuracy obtained from the decision tree method was 93.73%, while the accuracy obtained from the naïve Bayes method was 85.61%.
Downloads
References
I. Hanafia Lubis and I. Sahputra Saragih, “Klasifikasi Masyarakat Wajib Pajak Di Kabupaten Simalungun Menggunakan Metode Naive Bayes,” BRAHMANA: Jurnal Penerapan Kecerdasan Buatan, vol. 1, no. 1, pp. 15–23, 2019.
Y. A. Pravasanti, “Analisis Faktor-Faktor Yang Mempengaruhi Kepatuhan Wajib Pajak Dalam Membayar Pajak Bumi Dan Bangunan,” Jurnal Akuntansi dan Pajak, vol. 21, no. 01, Jul. 2020, doi: 10.29040/jap.v21i1.1165.
R. Hidayat and S. R. Wati, “Pengaruh kesadaran Wajib Pajak dan kualitas pelayanan pajak terhadap kepatuhan Wajib Pajak dalam membayar Pajak bumi dan Bangunan di kota Bandung,” Owner, vol. 6, no. 4, pp. 4009–4020, Oct. 2022, doi: 10.33395/owner.v6i4.1068.
P. Penghasilan et al., “Effect of Income and Taxpayer Awareness on Compliance in Paying Land and Building Tax (PBB),” 2021. [Online]. Available: http://e-journal.stie-aub.ac.id
B. A. Candra Permana and I. K. Dewi Patwari, “Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes,” Infotek : Jurnal Informatika dan Teknologi, vol. 4, no. 1, pp. 63–69, Jan. 2021, doi: 10.29408/jit.v4i1.2994.
S. Sonia Shabrilianti, A. Triayudi, and D. Avrilia Lantana, “Analisis Klasifikasi Perfomance KPI Salesman Menggunakan Metode Decision Tree Dan Naïve Bayes,” Jurnal Riset Komputer), vol. 10, no. 1, pp. 2407–389, 2023, doi: 10.30865/jurikom.v10i1.5628.
R. Ridho and H. Hendra, “Klasifikasi Diagnosis Penyakit Covid-19 Menggunakan Metode Decision Tree,” JUST IT : Jurnal Sistem Informasi, Teknologi Informasi dan Komputer, vol. 11, no. 3, pp. 69–75, 2022, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/article/view/13594
R. S. Lutfiyani and N. Retnowati, “Implementasi Pendeteksian Spam Email Menggunakan Metode Text Mining Dengan Algoritma Naïve Bayes Dan Decision Tree J48,” Jurnal Komputer dan Informatika, vol. 9, no. 2, pp. 244–252, Oct. 2021, doi: 10.35508/jicon.v9i2.5304.
S. Komparasi Stimulus Pajak Bumi Dan Bangunan Perdesaan Dan Perkotaan, D. Adhetiya Safitra, and A. Hanifah, “Jurnal Anggaran dan Keuangan Negara Indonesia Comparative Study of Stimulus on Land and Building Tax in Rural and Urban Areas,” 2022. [Online]. Available: https://anggaran.e-journal.id/akurasi
S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” 2021.
A. Tangkelayuk and E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes Dan Decision Tree,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, pp. 1109–1119, 2022, [Online]. Available: http://jurnal.mdp.ac.id
N. Rochmawati et al., “Covid Symptom Severity Using Decision Tree,” Proceeding - 2020 3rd International Conference on Vocational Education and Electrical Engineering: Strengthening the framework of Society 5.0 through Innovations in Education, Electrical, Engineering and Informatics Engineering, ICVEE 2020, pp. 1–5, 2020, doi: 10.1109/ICVEE50212.2020.9243246.
P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,” Innovation in Research of Informatics (INNOVATICS), vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.
M. Lutfi and M. Hasyim, “Penanganan Data Missing Value Pada Kualitas Produksi Jagung Dengan Menggunakan Metode K-Nn Imputation Pada Algoritma C4.5,” Online, 2019. [Online]. Available: http://jurnal.stiki-indonesia.ac.id/index.php/jurnalresistor
M. Fajri and A. Primajaya, “Komparasi Teknik Hyperparameter Optimization pada SVM untuk Permasalahan Klasifikasi dengan Menggunakan Grid Search dan Random Search,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
H. Sulistiani and A. A. Aldino, “Decision Tree C4.5 Algorithm for Tuition Aid Grant Program Classification (Case Study: Department of Information System, Universitas Teknokrat Indonesia),” Edutic - Scientific Journal of Informatics Education, vol. 7, no. 1, pp. 40–50, 2020, doi: 10.21107/edutic.v7i1.8849.
A. Wibowo and A. Rohman, “Prediksi Predikat Kelulusan Mahasiswa Menggunakan Naive Bayes dan Decision Tree pada Universitas XYZ,” EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 12, no. 2, p. 104, Dec. 2022, doi: 10.36448/expert.v12i2.2810.
Copyright (c) 2024 Moch Riyadi Maskur A, Arief Wibowo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).