Klasifikasi K-NN dalam Identifikasi Penyakit COVID-19 Menggunakan Ekstraksi Fitur GLCM
Abstract
Covid-19 is a disease that is endemic in various parts of the world including Indonesia, this disease infects the respiratory tract caused by a new type of corona virus. To find out the presence of this virus in the body, medical examinations such as blood tests, radiological examinations can be carried out X-rays (x-rays) and swabs. Therefore, in this study, identification covid-19 disease based on the rongen image from which the image was extracted using the GLCM feature extraction method, namely contrast, correlation, energy, and homogeneity, after obtaining the value from the extraction and then classified using data mining classification method, namely k-nearest neighbor by doing 3 modeling the input value of k. The results obtained from the classification obtained an accuracy of 80% in model 3 with a value of k = 5 and in models 1 and 2 obtained an accuracy of 90% with a value of k = 1 and k = 3.
Downloads
References
J. Huizen, “Why is it called coronavirus?,” 2020. https://www.medicalnewstoday.com (accessed Mar. 08, 2021).
M. D. C. Pane, “SARS,” 2020. https://www.alodokter.com/sars.
N. R. Aida, “7 Wabah Virus yang pernah Mengguncang Dunia Selain Corona,” 2020. https://www.kompas.com/tren/read/2020/02/06/171200465/7-wabah-virus-yang-pernah-mengguncang-dunia-selain-corona?amp=1&page=3&jxconn=1*la89al*other_jxampid*NmhETIFUTDVGbmJDaWdlUXZ4OW9FX2U3LVIVOTRnOVhQS21QSDk4YWpHZGxoZWNDM0hiTURoVG5iNXNjS0c2Tw.
Tim, “Berita Kesehatan: Kegunaan Tes Darah, Rontgen, dan Swab,” 2020. https://m.cnnindonesia.com (accessed Mar. 14, 2021).
Cdc.gov, “Symptoms,” 2021.
B. Yanti and U. Hayatun, “Peran pemeriksaan radiologi pada diagnosis Coronavirus disease 2019,” J. Kedokt. Syiah Kuala, pp. 53–57, 2020.
H. R, “Artikel: Perlu Tahu, Ini Jenis-Jenis Pemeriksaan Radiologi,” Halodoc.com, 2019. https://www.halodoc.com (accessed Apr. 14, 2021).
M. Helmi, “Rontgent,” 2020. https://www.sehatq.com (accessed Apr. 14, 2021).
Y. Afriyana, R. Purnamasari, and R. Patmasari, “Deteksi Kelainan Tulang Belakang Berdasarkan Citra Medis Digital Dengan Menggunakan Gray Level Co-occurence Matrix (GLCM) dan K-nearest Meighbor (KNN),” in e-Proceeding of Engineering, 2018, pp. 4657–4682.
Y. . Hariyani, S. Hadiyoso, and T. SupraptoSiadari, “Deteksi Penyakit COvid-19 Berdasarrkan Citra X-Ray Menggunakan Deep Residual Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Inform. Tek. Elektron., pp. 443–453, 2020.
C. Wijaya, H. Irsyad, and W. Widhiarso, “Klasifikasi Pneumonia Menggunakan KNearest Neighbor Dengan Ekstraksi GLCM,” J. Algoritm., pp. 33–44, 2020.
G. Gunadi and D. I. Sensue, “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunaan Algoritma Apriori Dan Freequent Pattern Growth (Fp-Growth) : Studi Kasus Percetakan Pt.Gramedia,” J. Telemat. MKOM, vol. 4, pp. 118–132, 2012.
R. N. Hayati, “Segmentasi Paru-Paru Pada Citra Digital Hasil X-Ray Thorax Menggunakan Metode Level Set Untuk Menghitung Diameer Maksimal Paru-Paru,” 2013.
N. Surani, “Berita: Mengenal Rongent Thorax (Dada),” RS Betha Medika, 2017. https://www.kasih-group.com/id/berita/3836/mengenal-rontgen-thorax-dada- (accessed Apr. 19, 2021).
H. A. Pitoyo, “Implementasi Metode Support Machine Untuk Klasifikasi Daun Mangga Berdasarkan Tekstur Daun,” 2020.
I. Purnamasari and T. Stujo, “Pengenalan Ciri Garis Telapak Tangan Menggunakan Ekstraksi Fitur (Glcm) Dan Metode K-Nn,” J. VOI(Voice Informatics), pp. 32–41, 2017.
D. S. Sayad, “datamining,” 2010. https://chem-eng.utoronto.ca/~datamining/.
F. Agustina and Z. A. Ardiansyah, “Identifikasi Citra Daging Ayam Kampung dan Mroiler Menggunakan Metoe GLCM dan Klasifikasi-NN,” J. INFOKAM, 2020.
D. E. Kurniawan and A. Dzikri, “Pengenalan Personal Berdasarkan Pengukuran Jarak Citra Wajah Menggunakan Pendekatan Linear dan Nonlinear,” in Seminar Nasional Teknik Informatika dan Komputer, 2015, pp. 1–4.
D. E. Kurniawan, “Identifikasi Citra Wajah Menggunakan Gabor-based Kernel Principal Component Analysis,” in Applied Business and Engineering Conference (ABEC 2014), 2014, pp. 1–5.
Copyright (c) 2021 Nisa Nafisah, Riza Ibnu Adam, Carudin Carudin
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).