Analysis of Deep Learning Implementation Using Xception for Rice Leaf Disease Classification
DOI:
https://doi.org/10.30871/jaic.v10i1.11800Keywords:
Deep Learning, Keras Apllication, Rice Leaf Disease, Web-Based, XceptionAbstract
Identifying rice leaf diseases plays a crucial role in maintaining agricultural productivity and preventing massive losses. In recent years, deep learning models have shown very promising performance in plant disease classification tasks. This study proposes a Rice Leaf Disease Detection System based on the Xception model from Keras Applications, an architecture that is still relatively unexplored for rice plant disease cases. Through preprocessing, data augmentation, and model refinement, the developed system achieved a training accuracy of 93% and a testing accuracy of 89% in classifying rice leaf conditions. In addition, metric evaluation showed precision, recall, and F1-score values of 89%, reflecting the model's ability to make consistent and balanced predictions. The trained model was then integrated into a web-based application to facilitate real-time disease diagnosis through image uploads. The results of this study prove the effectiveness of the Xception architecture in extracting agricultural image features and its potential for application in artificial intelligence-based smart farming systems.
Downloads
References
[1] R. A. Saputra, S. Wasyianti, A. Supriyatna, and D. F. Saefudin, “Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi,” JURNAL SWABUMI, vol. 9, no. 2, Sep. 2021, doi: https://doi.org/10.31294/swabumi.v9i2.11678.
[2] Arsani and Ade, “The Future of Indonesia and Global Agriculture: Rice Comsumption and Agricultural Modernization,” Jurnal Litbang Sukowati Media Penelitian dan Pengembangan, vol. 4, pp. 57–64, Nov. 2020, doi: 10.32630/sukowati.v4i1.132.
[3] R. Suciani, D. A. Anugra, and E. Faisal, “Deteksi Penyakit Daun Padi Menggunakan Deep Learning Dengan Arsitektur CNN,” Journal of Information Technology and Computer Science (INTECOMS), vol. 8, no. 5, 2025, doi: https://doi.org/10.31539/9112kc41.
[4] Badan Pusat Statistik, “Luas panen padi pada Agustus 2025 sebesar 1,11 juta hektare dengan produksi padi diperkirakan sebanyak 5,63 juta ton gabah kering giling (GKG),” BPS.
[5] Xiaolong Sun, Jing Lyu, and Candi Ge, “Knowledge and Farmers’ Adoption of Green Production Technologies: An Empirical Study on IPM Adoption Intention in Major Indica-Rice-Producing Areas in the Anhui Province of China,” Int J Environ Res Public Health, vol. 19, no. 21, pp. 1–16, Nov. 2022, doi: 10.3390/ijerph192114292.
[6] Yibin Wang, Haifeng Wang, and Zhaohua Peng, “Rice Diseases Detection and Classification Using Attention Based Neural Network and Bayesian Optimization,” Expert Syst Appl, vol. 178, p. 114770, Sep. 2021, doi: https://doi.org/10.1016/j.eswa.2021.114770.
[7] Qudsiah Nur Azizah, “Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,” Sudo Jurnal Teknik, vol. 2, no. 1, pp. 28–33, 2023, doi: https://doi.org/10.56211/sudo.v2i1.227.
[8] Didit Iswantoro and Dewi Handayani UN, “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Ilmiah Universitas Batanghari Jambi, vol. 22, no. 2, p. 900, Jul. 2022, doi: 10.33087/jiubj.v22i2.2065.
[9] R. Ardiansyah, M. Ayu, D. Widyadara, and U. Mahdyah, “Deteksi Penyakit Daun Mangga Menggunakan Convolutional Neural Network Untuk Analisis Komperasi Arsitektur VGG16, Xception,” 2025. doi: https://doi.org/10.29407/bv3y4028.
[10] A. Wulandari, R. Regasari, M. Putri, and A. S. Budi, “Implementasi Algoritma Xception pada Sistem Deteksi Katarak Menggunakan Raspberry Pi Berbasis Citra Mata,” Apr. 2025. doi: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14684.
[11] Fakhri Habib Hawari, Faslah Fadillah, Muhamad Rifqi Alviandi, and Toni Arifin, “Klasifikasi Penyakit Padi Menggunakan Algoritma CNN (Convolutional Neural Network),” JURNAL RESPONSIF, vol. 4, no. 2, pp. 184–189, Aug. 2022, doi: https://doi.org/10.51977/jti.v4i2.856.
[12] Syaikhul Anam Alidrus, Musthafa Aziz, and Oddy Virgantara Putra, Deteksi Penyakit Pada Daun Tanaman Padi Menggunakan Metode Convolutional Neural Network. 2021.
[13] Z. Firmansyah, D. Asmarajati, M. Hidayat, N. Hasanah, M. Alif Muwafiq Baihaqy, and S. Rohman, “Sistem Deteksi Dan Klasifikasi Penyakit Tanaman Padi Berdasarkan Daun Menggunakan Algoritma Convolutional Neural Network (CNN) Dengan Arsitektur ResNet-50,” TECHNOMEDIA : Informatics and Computer Science, vol. 2, no. 2, pp. 3047–2180, Jun. 2025, doi: 10.58641.
[14] G. V. de Andrade, S. R. dos Santos, I. P. C. A. da Silva, E. A. M. Pereira, and E. de A. Barboza, “Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves,” Dec. 2025, doi: 10.48550/arXiv.2512.13641.
[15] X. Wu, R. Liu, H. Yang, and Z. Chen, “An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning,” in 2020 2nd International Conference on Information Technology and Computer Application (ITCA), IEEE, Dec. 2020, pp. 262–267. doi: 10.1109/ITCA52113.2020.00063.
[16] D. P. Pamungkas and M. F. Amrulloh, “Klasifikasi Penyakit Daun Bawang Menggunakan Algoritma CNN Xception,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 1, pp. 359–366, Aug. 2025, doi: 10.29100/jipi.v10i1.5875.
[17] M. S. Akter, H. Shahriar, S. Sneha, and A. Cuzzocrea, “Multi-class Skin Cancer Classification Architecture Based on Deep Convolutional Neural Network,” in 2022 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2022, pp. 5404–5413. doi: 10.1109/BigData55660.2022.10020302.
[18] W. Hidayat, E. Utami, A. F. Iskandar, A. D. Hartanto, and A. B. Prasetio, “Perbandingan Performansi Model pada Algoritma K-NN terhadap Klasifikasi Berita Fakta Hoaks Tentang Covid-19,” Edumatic: Jurnal Pendidikan Informatika, vol. 5, no. 2, pp. 167–176, Dec. 2021, doi: 10.29408/edumatic.v5i2.3664.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Niken Puspitaningrum, Majid Rahardi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








