A Comparative Study of Machine Learning and Deep Learning Models for Heart Disease Classification

Authors

  • Martina Sances Simanjuntak Informatics Engineering, STMIK TIME, Medan, Indonesia
  • Robet Robet Informatics Engineering, STMIK TIME, Medan, Indonesia
  • Leony Hoki Informatics Engineering, STMIK TIME, Medan, Indonesia

DOI:

https://doi.org/10.30871/jaic.v9i6.11546

Keywords:

Machine Learning, Deep Neural Network, Artificial Intelligence, Heart Disease, Classification

Abstract

Heart disease remains one of the leading causes of mortality worldwide, necessitating accurate early detection. This study aims to compare the performance of several Machine Learning (ML) and Deep Learning (DL) algorithms in heart disease classification using the Heart Disease dataset with 918 samples. The methods tested included Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), and Deep Neural Network (DNN). Preprocessing included feature normalization, data splitting (80:20), and simple hyperparameter tuning for parameter-sensitive models. Evaluations were conducted using accuracy, precision, recall, F1-score, AUC, and confusion matrix analysis to identify error patterns. The results showed that SVM and DNN achieved the highest accuracies of 91.3% and 92.1%, respectively. However, DNN has higher computational costs and risks of overfitting on small datasets. These findings confirm that traditional ML models such as SVM remain highly competitive on tabular medical data.

Downloads

Download data is not yet available.

References

[1] A. Ridwanmo, M. Fadillah, and T. H. Irfani, “Deteksi Dini Faktor Risiko Penyakit Jantung dan Pembuluh Darah, Hubungan Antara Obesitas, Aktivitas Fisik dan Kolesterol Total di Kecamatan Kertapati, Kota Palembang,” J. Epidemiol. Kesehat. Komunitas, vol. 5, no. 2, pp. 96–103, 2020, doi: 10.14710/jekk.v5i2.6729.

[2] A. M. Hamsi, F. Setiawan, and N. H. Nur, “JURNAL,” vol. 8, no. 3, pp. 380–388, 2025.

[3] R. G. Wardhana, G. Wang, and F. Sibuea, “Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, 2023, doi: 10.24076/joism.2023v5i1.1136.

[4] N. H. Alfajr and S. Defiyanti, “Prediksi Penyakit Jantung Menggunakan Metode Random Forest Dan Penerapan Principal Component Analysis (Pca),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5055.

[5] F. N. Muhammad, F. Hidayatullah, M. S. Al Andalusi, dan W. Hidayat, “Analisis Penggunaan Media Sosial Terhadap Kualitas Tidur Pada Mahasiswa Fakultas Ekonomi Dan Bisnis Islam,” SANTRI J. Ekon. dan Keuang. Islam, vol. 2, no. 4, hlm. 62–69, 2024, doi: 10.61132/santri.v2i4.726.

[6] Ratnasari, A. Jurnaidi Wahidin, A. Eko Setiawan, and P. Bintoro, “Machine Learning Untuk Klasifikasi Penyakit Jantung,” Aisyah J. Informatics Electr. Eng., vol. 6, no. 1, pp. 145–150, 2024, doi: 10.30604/jti.v6i1.272.

[7] W. Bukaita, “Cardiovascular Disease Prediction Using Machine Learning,” Am. J. Biomed. Sci. Res., vol. 27, no. 2, pp. 327–340, 2025, doi: 10.34297/ajbsr.2025.27.003539.

[8] Julia Triani, Yovi Pratama, and E. Yanti, “Komparasi Dalam Prediksi Gagal Jantung Dengan Menggunakan Metode C4.5 dan Naïve Bayes,” J. Inform. Dan Rekayasa Komputer(JAKAKOM), vol. 3, no. 1, pp. 394–402, 2023, doi: 10.33998/jakakom.2023.3.1.759.

[9] T. Misriati, R. Aryanti, and A. Sagiyanto, “High Accurate Prediction of Heart Disease Classification by Support Vector Machine,” no. Icaisd 2023, pp. 5–9, 2024, doi: 10.5220/0012437100003848.

[10] W. Liu et al., “Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis,” Eur. Hear. J. - Qual. Care Clin. Outcomes, vol. 9, no. 4, pp. 310–322, 2023, doi: 10.1093/ehjqcco/qcad017.

[11] F. M. Natsir, R. Y. Bakti, and T. Wahyuni, “Analisis Deteksi Dini Penyakit Jantung dengan Pendekatan Support Vector Machine pada Data Pasien,” Arus J. Sains dan Teknol., vol. 2, no. 2, pp. 437–446, 2024, doi: 10.57250/ajst.v2i2.669.

[12] G. Gunarso, A. Buono, M. Mushthofa, and M. T. Uliniansyah, “Pengembangan model akustik dengan deep neural network untuk sistem pengenalan wicara bahasa Indonesia,” Aiti, vol. 22, no. 1, pp. 84–100, 2025, doi: 10.24246/aiti.v22i1.84-100.

[13] J. Waruwu and A. Dharma, “Perbandingan Algoritma Klasifikasi Pada Pasien Penyakit Jantung,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 7, no. 5, pp. 1691–1700, 2024, doi: 10.31539/intecoms.v7i5.12434.

[14] A. Y. Agusyul and F. Firmansyah, “Prediksi Penyakit Jantung Menggunakan Algoritma Random Forest,” J. Minfo Polgan, vol. 12, no. 2, pp. 2239–2246, 2023, doi: 10.33395/jmp.v12i2.13214.

[15] I. K. A. Sugitha, A. Triayudi, and E. T. E. Handayani, “Classification of Heart Disease Using the K-Nearest Neighbor Algorithm and Logistic Regression,” J. Pilar Nusa Mandiri, vol. 20, no. 2, pp. 183–190, 2024, doi: 10.33480/pilar.v20i2.5742.

[16] I. S. B. Azhar and W. K. Sari, “Penerapan Data Mining Dan Tekonologi Machine Learning Pada Klasifikasi Penyakit Jantung,” JSI J. Sist. Inf., vol. 14, no. 1, pp. 2560–2568, 2022, doi: 10.18495/jsi.v14i1.16140.

[17] S. Heristian, “Perbandingan Algoritma Machine Learning pada Klasifikasi Penyakit Jantung,” J. Infortech, vol. 6, no. 1, pp. 46–51, 2024, doi: 10.31294/infortech.v6i1.21888.

[18] A. A. Surya and Y. Yamasari, “Penerapan Algoritma Naïve Bayes (NB) untuk Klasifikasi Penyakit Jantung,” J. Informatics Comput. Sci., vol. 5, no. 03, pp. 447–455, 2024, doi: 10.26740/jinacs.v5n03.p447-455.

Downloads

Published

2025-12-07

How to Cite

[1]
M. S. Simanjuntak, R. Robet, and L. Hoki, “A Comparative Study of Machine Learning and Deep Learning Models for Heart Disease Classification”, JAIC, vol. 9, no. 6, pp. 3405–3409, Dec. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.