A Comparative Study of Machine Learning and Deep Learning Models for Heart Disease Classification
DOI:
https://doi.org/10.30871/jaic.v9i6.11546Keywords:
Machine Learning, Deep Neural Network, Artificial Intelligence, Heart Disease, ClassificationAbstract
Heart disease remains one of the leading causes of mortality worldwide, necessitating accurate early detection. This study aims to compare the performance of several Machine Learning (ML) and Deep Learning (DL) algorithms in heart disease classification using the Heart Disease dataset with 918 samples. The methods tested included Naïve Bayes, Decision Tree, Random Forest, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbor (KNN), and Deep Neural Network (DNN). Preprocessing included feature normalization, data splitting (80:20), and simple hyperparameter tuning for parameter-sensitive models. Evaluations were conducted using accuracy, precision, recall, F1-score, AUC, and confusion matrix analysis to identify error patterns. The results showed that SVM and DNN achieved the highest accuracies of 91.3% and 92.1%, respectively. However, DNN has higher computational costs and risks of overfitting on small datasets. These findings confirm that traditional ML models such as SVM remain highly competitive on tabular medical data.
Downloads
References
[1] A. Ridwanmo, M. Fadillah, and T. H. Irfani, “Deteksi Dini Faktor Risiko Penyakit Jantung dan Pembuluh Darah, Hubungan Antara Obesitas, Aktivitas Fisik dan Kolesterol Total di Kecamatan Kertapati, Kota Palembang,” J. Epidemiol. Kesehat. Komunitas, vol. 5, no. 2, pp. 96–103, 2020, doi: 10.14710/jekk.v5i2.6729.
[2] A. M. Hamsi, F. Setiawan, and N. H. Nur, “JURNAL,” vol. 8, no. 3, pp. 380–388, 2025.
[3] R. G. Wardhana, G. Wang, and F. Sibuea, “Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, 2023, doi: 10.24076/joism.2023v5i1.1136.
[4] N. H. Alfajr and S. Defiyanti, “Prediksi Penyakit Jantung Menggunakan Metode Random Forest Dan Penerapan Principal Component Analysis (Pca),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5055.
[5] F. N. Muhammad, F. Hidayatullah, M. S. Al Andalusi, dan W. Hidayat, “Analisis Penggunaan Media Sosial Terhadap Kualitas Tidur Pada Mahasiswa Fakultas Ekonomi Dan Bisnis Islam,” SANTRI J. Ekon. dan Keuang. Islam, vol. 2, no. 4, hlm. 62–69, 2024, doi: 10.61132/santri.v2i4.726.
[6] Ratnasari, A. Jurnaidi Wahidin, A. Eko Setiawan, and P. Bintoro, “Machine Learning Untuk Klasifikasi Penyakit Jantung,” Aisyah J. Informatics Electr. Eng., vol. 6, no. 1, pp. 145–150, 2024, doi: 10.30604/jti.v6i1.272.
[7] W. Bukaita, “Cardiovascular Disease Prediction Using Machine Learning,” Am. J. Biomed. Sci. Res., vol. 27, no. 2, pp. 327–340, 2025, doi: 10.34297/ajbsr.2025.27.003539.
[8] Julia Triani, Yovi Pratama, and E. Yanti, “Komparasi Dalam Prediksi Gagal Jantung Dengan Menggunakan Metode C4.5 dan Naïve Bayes,” J. Inform. Dan Rekayasa Komputer(JAKAKOM), vol. 3, no. 1, pp. 394–402, 2023, doi: 10.33998/jakakom.2023.3.1.759.
[9] T. Misriati, R. Aryanti, and A. Sagiyanto, “High Accurate Prediction of Heart Disease Classification by Support Vector Machine,” no. Icaisd 2023, pp. 5–9, 2024, doi: 10.5220/0012437100003848.
[10] W. Liu et al., “Machine-learning versus traditional approaches for atherosclerotic cardiovascular risk prognostication in primary prevention cohorts: a systematic review and meta-analysis,” Eur. Hear. J. - Qual. Care Clin. Outcomes, vol. 9, no. 4, pp. 310–322, 2023, doi: 10.1093/ehjqcco/qcad017.
[11] F. M. Natsir, R. Y. Bakti, and T. Wahyuni, “Analisis Deteksi Dini Penyakit Jantung dengan Pendekatan Support Vector Machine pada Data Pasien,” Arus J. Sains dan Teknol., vol. 2, no. 2, pp. 437–446, 2024, doi: 10.57250/ajst.v2i2.669.
[12] G. Gunarso, A. Buono, M. Mushthofa, and M. T. Uliniansyah, “Pengembangan model akustik dengan deep neural network untuk sistem pengenalan wicara bahasa Indonesia,” Aiti, vol. 22, no. 1, pp. 84–100, 2025, doi: 10.24246/aiti.v22i1.84-100.
[13] J. Waruwu and A. Dharma, “Perbandingan Algoritma Klasifikasi Pada Pasien Penyakit Jantung,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 7, no. 5, pp. 1691–1700, 2024, doi: 10.31539/intecoms.v7i5.12434.
[14] A. Y. Agusyul and F. Firmansyah, “Prediksi Penyakit Jantung Menggunakan Algoritma Random Forest,” J. Minfo Polgan, vol. 12, no. 2, pp. 2239–2246, 2023, doi: 10.33395/jmp.v12i2.13214.
[15] I. K. A. Sugitha, A. Triayudi, and E. T. E. Handayani, “Classification of Heart Disease Using the K-Nearest Neighbor Algorithm and Logistic Regression,” J. Pilar Nusa Mandiri, vol. 20, no. 2, pp. 183–190, 2024, doi: 10.33480/pilar.v20i2.5742.
[16] I. S. B. Azhar and W. K. Sari, “Penerapan Data Mining Dan Tekonologi Machine Learning Pada Klasifikasi Penyakit Jantung,” JSI J. Sist. Inf., vol. 14, no. 1, pp. 2560–2568, 2022, doi: 10.18495/jsi.v14i1.16140.
[17] S. Heristian, “Perbandingan Algoritma Machine Learning pada Klasifikasi Penyakit Jantung,” J. Infortech, vol. 6, no. 1, pp. 46–51, 2024, doi: 10.31294/infortech.v6i1.21888.
[18] A. A. Surya and Y. Yamasari, “Penerapan Algoritma Naïve Bayes (NB) untuk Klasifikasi Penyakit Jantung,” J. Informatics Comput. Sci., vol. 5, no. 03, pp. 447–455, 2024, doi: 10.26740/jinacs.v5n03.p447-455.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Martina Sances Simanjuntak, Robet Robet, Leony Hoki

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








