Classification of Rice Leaf Diseases Using Support Vector Machine with HSV and GLCM-Based Feature Extraction

Authors

  • Rizal Ramli Universitas Muria Kudus
  • Evanita Evanita Universitas Muria Kudus
  • Aditya Akbar Riadi Universitas Muria Kudus

DOI:

https://doi.org/10.30871/jaic.v9i5.10403

Keywords:

GLCM, HSV, Rice Leaf Disease, SVM, Image Classification

Abstract

This study aims to classify rice leaf diseases using the Support Vector Machine (SVM) algorithm based on image processing and feature extraction. A total of 600 rice leaf images were collected, each representing one of five disease types: bacterial blight, leaf smut, leaf blast, brown spot, and hispa. The images underwent preprocessing, including resizing, background removal, and feature extraction using HSV and GLCM methods. Extracted features were then used to train and test an SVM classification model. The evaluation using confusion matrix showed an overall accuracy of 83%, with class-specific F1-scores ranging from 0.72 to 0.90. These results indicate that SVM is effective in classifying rice leaf diseases and can potentially assist farmers in early disease detection to reduce crop loss.

Downloads

Download data is not yet available.

References

[1] BPS, “Produksi Gabah Kering Giling.” [Online]. Available: https://www.bps.go.id/id/pressrelease/2025/02/03/2414/pada-2024--luas-panen-padi-mencapai-sekitar-10-05-juta-hektare-dengan-produksi-padi-sebanyak-53-14-juta-ton-gabah-kering-giling--gkg--.html

[2] BPS, “Laju Pertumbuhan Penduduk.” Accessed: Jun. 11, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTk3NiMy/laju-pertumbuhan-penduduk.html

[3] Y. Defitri, “Identifikasi jamur patogen penyebab penyakit pada tanaman padi (Oryza sativa) di Lubuk Ruso kecamatan Pemayung kabupaten Batanghari Jambi,” J. Ilm. Univ. Batanghari Jambi, vol. 13, no. 4, pp. 113–117, 2018.

[4] Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, 2022, doi: 10.32736/sisfokom.v11i3.1502.

[5] B. W. Kurniadi, H. Prasetyo, G. L. Ahmad, B. Aditya Wibisono, and D. Sandya Prasvita, “Analisis Perbandingan Algoritma SVM dan CNN untuk Klasifikasi Buah,” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 1–11, 2021.

[6] I. Irma, M. Muchtar, R. Adawiyah, and S. Sarimuddin, “Klasifikasi Tingkat Kematangan Cabai Merah Keriting Menggunakan Svm Multiclass Berdasarkan Ekstraksi Fitur Warna,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, pp. 1747–1755, 2024, doi: 10.23960/jitet.v12i3.4430.

[7] M. Lestari, “Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung,” Fakt. Exacta, vol. 7, no. September 2010, pp. 366–371, 2014.

[8] S. D. Kamil, D. Widiyanto, and N. Chamidah, “Perbandingan Metode Decision Tree dengan Naive Bayes Dalam Klasifikasi Tumor Otak Citra MRI,” Semin. Nas. Mhs. Ilmu Komput. dan Apl., pp. 539–550, 2020.

[9] A. T. Cahyani, “Algoritma Random Forest , Xgboost Dan Decision Tree Dengan Ekstraksi Fitur Algoritma Random Forest , Xgboost Dan Decision Tree Dengan Ekstraksi Fitur,” 2024.

[10] M. N. M. Hakim, A. B. Nugroho, and A. E. Minarno, “Prediksi Tumor Otak Menggunakan Metode Convolutional Neural Network,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 17, no. 1, p. 48, 2023, doi: 10.30872/jim.v17i1.5246.

[11] Meiriyama, “Klasifikasi Citra Buah berbasis fitur warna HSV dengan klasifikatorSVM,” J. Komput. Terap., vol. 4, no. 1, pp. 50–61, 2018, [Online]. Available: http://jurnal.pcr.ac.id

[12] N. Neneng, K. Adi, and R. Isnanto, “Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM),” J. Sist. Inf. Bisnis, vol. 6, no. 1, p. 1, 2016, doi: 10.21456/vol6iss1pp1-10.

[13] A. Arifin, J. Hendyli, and D. E. Herwindiati, “Klasifikasi Tanaman Obat Herbal Menggunakan Metode Support Vector Machine,” Comput. J. Comput. Sci. Inf. Syst., vol. 5, no. 1, p. 25, 2021, doi: 10.24912/computatio.v1i1.12811.

[14] Ridho Surya Pangestu, Hari Purwadi, and Agusma Wajiansyah, “Ekstraksi Ciri Image Wajah Berdasarkan Ciri Warna Hue Saturation Value (HSV) dan Geometri,” J. Komputer, Inf. dan Teknol., vol. 5, no. 1, p. 11, 2025, doi: 10.53697/jkomitek.v5i1.2472.

[15] Adela Regita Azzahra, Purnawansyah, H. Darwis, and D. Widyawati, “Klasifikasi Daun Herbal Menggunakan Metode CNN dan Naïve Bayes dengan Fitur GLCM,” Indones. J. Comput. Sci., vol. 12, no. 4, 2023, doi: 10.33022/ijcs.v12i4.3362.

[16] Pramudiya, Cerwyn Asyraq, Aldo Kadafi, and Ricky Putra Sardika, “Analisis Gambar Menggunakan Metode Grayscale Dan Hsv (Hue, Saturation, Value),” Sist. Informasi, Teknol. Inf. dan Komput., vol. 14, no. 3, pp. 174–180, 2024.

[17] R. P. Putra, J. Jumadi, and D. Lianda, “Pengolahan Citra Digital Untuk Mengidentifikasi Tingkat Kematangan Buah Kelapa Sawit Berdasarkan Warna Rgb Dan Hsv Dengan Menggunakan Metode Self Organizing Map (SOM),” J. Media Infotama, vol. 20, no. 1, p. 341149, 2024.

[18] J. Sofian and R. H. Laluma, “Jenis Tumor Otak Dengan Metode Image Threshold Dan Glcm Menggunakan Algoritma K-Nn ( Nearest Neighbor ) Classifier Berbasis Web,” J. Infotronik, vol. 4, no. 2, pp. 51–56, 2019.

[19] F. Siqueira, W. Schwartz, and H. Pedrini, “Multi-Scale Gray Level Co-Occurrence Matrices for Texture Description.,” Neurocomputing, vol. 120, pp. 1–10, 2013, doi: 10.1016/j.neucom.2012.09.042.

[20] M. A. Ramadhan and R. Andarsyah, Klasifikasi Text Spam Menggunakan Metode Support Vector Machine Dan Naïve Bayes. Bandung: Penerbit Buku Pedia, 2022.

[21] J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (New York), vol. 507, pp. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.

Downloads

Published

2025-10-08

How to Cite

[1]
R. Ramli, E. Evanita, and A. Akbar Riadi, “Classification of Rice Leaf Diseases Using Support Vector Machine with HSV and GLCM-Based Feature Extraction”, JAIC, vol. 9, no. 5, pp. 2329–2337, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.