Implementation and Comparative Analysis of CNN and Transfer Learning Models (EfficientNetB0, MobileNetV2, and ResNet50) for Rice Leaf Disease Detection Based on Digital Images

Authors

  • Tri Wahyu Utami Universitas PGRI Semarang
  • Mega Novita Universitas PGRI Semarang
  • Khoiriya Latifa Universitas PGRI Semarang

DOI:

https://doi.org/10.30871/jaic.v9i6.11616

Keywords:

CNN, Tranfer learning, EfficientNetB0, MobileNetV2, ResNet50

Abstract

Rice leaf diseases significantly reduce agricultural productivity, making early and accurate detection essential, particularly in rice-producing regions such as Indonesia. This study proposes an automated rice leaf disease detection system based on Convolutional Neural Networks (CNN) and transfer learning. The dataset, obtained from the Mendeley Data Repository, consists of 6,889 images classified into eight categories: Bacterial Leaf Blight, Brown Spot, Healthy Rice Leaf, Leaf Blast, Leaf Scald, Narrow Brown Leaf Spot, Rice Hispa, and Sheath Blight. The dataset was divided into 70% training, 15% validation, and 15% testing. A baseline CNN model and three pre-trained models—EfficientNetB0, MobileNetV2, and ResNet50—were evaluated using accuracy, precision, recall, F1-score, and confusion matrix analysis. The baseline CNN achieved a test accuracy of 48.26%, while EfficientNetB0 achieved 58.41%. In contrast, MobileNetV2 and ResNet50 demonstrated significantly better performance, with test accuracies of 79.98% and 76.60%, respectively. MobileNetV2 exhibited the most balanced performance across all classes, showing superior generalization capability and computational efficiency. The best-performing model was integrated into a Streamlit-based application, enabling real-time rice leaf disease detection through image upload. The results confirm that transfer learning substantially improves classification accuracy and robustness compared to conventional CNNs. This study highlights the potential of lightweight deep learning models for practical implementation in smart agriculture systems and provides a reliable solution for automated rice disease detection in real-world conditions.

Downloads

Download data is not yet available.

References

[1] S. Arnandito and T. B. Sasongko, “Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 176–185, 2024, doi: 10.30871/jaic.v8i1.7927.

[2] M. I. Burhanuddin, Adam Syaifullah, Setiawan Adeka Putra Jaya, and Muhammad Gabriel Somoal, “Analisis Komparatif Model MobilenetV1 Dan EfficientnetB0 Dalam Klasifikasi Citra Empat Musim Menggunakan Transfer Learning,” JEKIN - J. Tek. Inform., vol. 5, no. 2, pp. 508–521, 2025, doi: 10.58794/jekin.v5i2.1378.

[3] A. M. Y. Abdu, “Tanaman padi menggunakan arsitektur densenet-169,” p. 8, 2024, [Online]. Available: repository.uma.ac.id

[4] U. M. Area, “Mobilenetv3 Dengan Cbam Untuk Klasifikasi Sikripsi Oleh : Tarsius Tulus Hati Buuolo Fakultas Teknik Universitas Medan Area Medan Sikripsi Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana di Fakultas Teknik Universitas Medan Area Oleh : Tarsius Tulus Hati Buulolo Fakultas Teknik Medan,” 2025.

[5] T. S. Winanto, C. Rozikin, and A. Jamaludin, “Analisa Performa Arsitektur Transfer Learning Untuk Mengindentifikasi Penyakit Daun Pada Tanaman Pangan,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 68–81, 2023, doi: 10.30871/jaic.v7i1.5991.

[6] J. Lu, L. Tan, and H. Jiang, “Review on convolutional neural network (CNN) applied to plant leaf disease classification,” Agric., vol. 11, no. 8, pp. 1–18, 2021, doi: 10.3390/agriculture11080707.

[7] A. Abade, P. A. Ferreira, and F. de Barros Vidal, “Plant diseases recognition on images using convolutional neural networks: A systematic review,” Comput. Electron. Agric., vol. 185, 2021, doi: 10.1016/j.compag.2021.106125.

[8] A. Upadhyay et al., “Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, models, and trends in precision agriculture,” Artif. Intell. Rev., vol. 58, no. 3, 2025, doi: 10.1007/s10462-024-11100-x.

[9] T. D. Salka, M. B. Hanafi, S. M. S. A. A. Rahman, D. B. M. Zulperi, and Z. Omar, “Plant leaf disease detection and classification using convolution neural networks model: a review,” Artif. Intell. Rev., vol. 58, no. 10, 2025, doi: 10.1007/s10462-025-11234-6.

[10] A. C. Anwari, “Klasifikasi Penyakit Tanaman Tomat Melalui Citra Daun Menggunakan Metode Convolutional Neural Network,” JIMUJurnal Ilm. Multidisipliner, vol. 2, no. 03, pp. 639–647, 2024, doi: 10.70294/jimu.v2i03.421.

[11] M. Jeffry Setiawan, B. Nugroho, and A. Puspita Sari, “Klasifikasi Penyakit Daun Tanaman Menggunakan Algoritma CNNdan Random Forest,” Teknologi, vol. 12, no. 1, pp. 1–8, 2022, [Online]. Available: https://journal.unipdu.ac.id/index.php/teknologi/article/view/2403

[12] M. Tiara, C. Hia, D. R. Hutasuhut, and E. M. Hutauruk, “Deteksi Penyakit Blas, Tungro & Bercak Coklat Pada Tanaman Padi Menggunakan Metode Convolutional Neural Network,” J. Media Inform., vol. 6, no. 3, pp. 2221–2232, 2025.

[13] N. N. Saragih and R. Kurniawan, “(Journal of Computer Engineering, System and Science),” J. Comput. Eng. Syst. Sci., vol. 10, no. 1, pp. 299–311, 2025.

[14] A. Noor Hidayah, “Sistem Deteksi Penyakit Tanaman Padi Dan Rekomendasi Pupuk Menggunakan Metode Transfer Learning Dengan Model VGG19,” pp. 1–9.

[15] A. Asrafil, A. Paliwang, M. R. D. Septian, M. Cahyanti, and R. Swedia, “Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan,” Sebatik, no. 1410–3737, pp. 207–212, 2020.

[16] D. Margarita, “Klasifikasi Penyakit Padi Menggunakan Support Vector Machine,” vol. 9, no. 4, pp. 2256–2270, 2024, [Online]. Available: https://doi.org/10.29100/jipi.v9i4.5634

[17] S. Sariah, N. Suarna, I. Ali, and D. Solihudin, “Penerapan Convolutional Neural Network (CNN) Untuk Prediksi Penyakit Tanaman Padi Melalui Citra Daun,” J. Komtika (Komputasi dan Inform., vol. 9, no. 1, pp. 1–10, 2025, doi: 10.31603/komtika.v9i1.12852.

[18] D. Pratama, “Jurnal Teknologi Terpadu LEARNING,” J. Teknol. Terpadu, vol. 8, no. 1, pp. 89–94, 2022.

[19] A. M. Agista and Dedy Kurniadi, “Implementasi Arsitektur Resnet50 Pada Klasifikasi Motif Batik Indonesia Menggunakan Metode Convolutional Neural Network (Cnn),” J. Rekayasa Sist. Inf. dan Teknol., vol. 2, no. 4, pp. 1324–1343, 2025, doi: 10.70248/jrsit.v2i4.2375.

[20] Y. J. Krisnawan and W. Setiawan, “Implementasi Convolutional Neural Network (CNN) untuk Deteksi Katarak pada Citra Mata,” J. Ekon. Manaj. Sist. Inf., vol. 6, no. 1, pp. 443–450, 2024, doi: 10.38035/jemsi.v6i1.3066.

[21] L. Informatika et al., “Klasifikasi Cengkeh Menggunakan Metode Convolutional Neural Network ( CNN ),” vol. 2, no. 3, pp. 341–349, 2025.

[22] K. Prasetyo and R. Mahenra, “Analisis Kinerja Convolutional Neural Networks Baseline untuk Identifikasi Jenis Jenis Penyakit Kentang: Performance Analysis of Baseline Convolutional Neural Networks for Identifying Potato Disease Types,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 2, pp. 609–615, 2025, [Online]. Available: https://doi.org/10.57152/malcom.v5i2.1722

[23] A. Hibatullah and I. Maliki, “Penerapan Metode Convolutional Neural Network Pada Pengenalan Pola Citra Sandi Rumput,” J. Informatics Comput. Sci., vol. 1, no. 2, pp. 1–8, 2019.

[24] A. Mufidatuzzainiya and M. Faisal, “Penggunaan Teknik Transfer Learning pada Metode CNN untuk Pengenalan Tanaman Bunga,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 10, no. 2, pp. 195–206, 2025, doi: 10.14421/jiska.2025.10.2.195-206.

[25] M. Ferry Fernanda, Y. Azhar, and A. E. Minarno, “Implementasi Transfer Learning menggunakan Model Efficientnet-B3 pada Klasifikasi Pigmen Kanker Kulit,” Repositor, vol. 7, no. 2, pp. 177–188, 2025.

[26] F. Zaelani and Y. Miftahuddin, “Perbandingan Metode EfficientNetB3 dan MobileNetV2 Untuk Identifikasi Jenis Buah-buahan Menggunakan Fitur Daun,” J. Ilm. Teknol. Infomasi Terap., vol. 9, no. 1, pp. 1–11, 2022, doi: 10.33197/jitter.vol9.iss1.2022.911.

[27] S. F. D. Wardhana and A. Nugroho, “Perbandingan Arsitektur MobileNetV2 dan MobileNetV3 Dalam Klasifikasi Jenis Jeruk,” J. Ilmu Komput. dan Bisnis, vol. 16, no. 1, pp. 25–34, 2025, doi: 10.47927/jikb.v16i1.916.

[28] A. R. Hermanto, A. Aziz, and S. Sudianto, “Perbandingan Arsitektur MobileNetV2 dan RestNet50 untuk Klasifikasi Jenis Buah Kurma Comparison of MobileNetV2 and RestNet50 Architectures for Date Fruit Classification by Type,” J. Sist. dan Teknol. Inf., vol. 12, no. 4, pp. 630–637, 2024, doi: 10.26418/justin.v12i4.80358.

Downloads

Published

2025-12-15

How to Cite

[1]
T. W. Utami, M. Novita, and K. Latifa, “Implementation and Comparative Analysis of CNN and Transfer Learning Models (EfficientNetB0, MobileNetV2, and ResNet50) for Rice Leaf Disease Detection Based on Digital Images”, JAIC, vol. 9, no. 6, pp. 3862–3870, Dec. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.