Implementation of Deep Learning with Multilayer Perceptron (MLP) for Heart Disease Prediction Using the SMOTE-ENN Technique

Authors

  • Erliyan Redy Susanto Universitas Teknokrat Indonesia
  • Erik Saputra Universitas Teknokrat Indonesia

DOI:

https://doi.org/10.30871/jaic.v9i3.9337

Keywords:

Heart Disease, Deep Learning, MLP, SMOTEENN, Medical Prediction

Abstract

Heart disease is a leading cause of global mortality, with its prevalence increasing annually. This study aims to develop a heart disease prediction model using a Multilayer Perceptron (MLP) combined with the SMOTE-ENN resampling technique to address data imbalance issues. The dataset used was obtained from the UCI Machine Learning Repository and includes patients' clinical and demographic features. The initial dataset consisted of [number of data] records, with an imbalanced class distribution between patients with and without heart disease. After applying SMOTE-ENN, the class distribution became more balanced, allowing the model to learn patterns more effectively. The MLP model was designed with two hidden layers comprising 64 and 32 neurons, respectively, using the ReLU activation function in the hidden layers and a sigmoid function in the output layer. Evaluation results showed that the model achieved an accuracy of 89.47%, precision of 77.78%, recall of 100%, and an F1-score of 87.5%. To validate the effectiveness of SMOTE-ENN, comparisons were made with other methods such as SMOTE and undersampling, as well as baseline models like Logistic Regression and Decision Tree. The results demonstrate that SMOTE-ENN outperforms other techniques in handling class imbalance, leading to better overall model performance.

Downloads

Download data is not yet available.

References

[1] O. Gaidai, Y. Cao, and S. Loginov, “Global Cardiovascular Diseases Death Rate Prediction,” Curr. Probl. Cardiol., vol. 48, no. 5, p. 101622, May 2023, doi: 10.1016/j.cpcardiol.2023.101622.

[2] S. Sidaria, E. Huriani, and S. D. Nasution, “Self Care dan Kualitas Hidup Pasien Penyakit Jantung Koroner,” JIK J. ILMU Kesehat., vol. 7, no. 1, p. 41, Apr. 2023, doi: 10.33757/jik.v7i1.631.

[3] A. A. Robert and M. A. Al Dawish, “Cardiovascular Disease among Patients with Diabetes: The Current Scenario in Saudi Arabia,” Curr. Diabetes Rev., vol. 17, no. 2, pp. 180–185, Feb. 2021, doi: 10.2174/1573399816666200527135512.

[4] V. Shorewala, “Early detection of coronary heart disease using ensemble techniques,” Informatics Med. Unlocked, vol. 26, p. 100655, 2021, doi: 10.1016/j.imu.2021.100655.

[5] N. Ghaffar Nia, E. Kaplanoglu, and A. Nasab, “Evaluation of artificial intelligence techniques in disease diagnosis and prediction,” Discov. Artif. Intell., vol. 3, no. 1, p. 5, Jan. 2023, doi: 10.1007/s44163-023-00049-5.

[6] M. M. Ahsan and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artif. Intell. Med., vol. 128, p. 102289, Jun. 2022, doi: 10.1016/j.artmed.2022.102289.

[7] F. Handayani, “Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network Dalam Prediksi Penyakit Jantung,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 329, Dec. 2021, doi: 10.26418/jp.v7i3.48053.

[8] S. Chen, E. Xie, C. Ge, R. Chen, D. Liang, and P. Luo, “CycleMLP: A MLP-Like Architecture for Dense Visual Predictions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 12, pp. 14284–14300, Dec. 2023, doi: 10.1109/TPAMI.2023.3303397.

[9] H. Guan, Y. Zhang, M. Xian, H. D. Cheng, and X. Tang, “SMOTE-WENN: Solving class imbalance and small sample problems by oversampling and distance scaling,” Appl. Intell., vol. 51, no. 3, pp. 1394–1409, Mar. 2021, doi: 10.1007/s10489-020-01852-8.

[10] J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN,” Wirel. Pers. Commun., vol. 128, no. 4, pp. 2913–2936, Feb. 2023, doi: 10.1007/s11277-022-10079-4.

[11] L. T. M and K. B, “HybMLP: Revolutionizing Cardiovascular Disease Prediction with Hybrid Multi-Layer Perceptron and Gradient Boosting,” in 2025 International Conference on Multi-Agent Systems for Collaborative Intelligence (ICMSCI), Jan. 2025, pp. 1501–1507, doi: 10.1109/ICMSCI62561.2025.10894362.

[12] N. Kalra, P. Verma, and S. Verma, “Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques,” Comput. Biol. Med., vol. 179, p. 108917, Sep. 2024, doi: 10.1016/j.compbiomed.2024.108917.

[13] U. Nagavelli, D. Samanta, and P. Chakraborty, “Machine Learning Technology-Based Heart Disease Detection Models,” J. Healthc. Eng., vol. 2022, pp. 1–9, Feb. 2022, doi: 10.1155/2022/7351061.

[14] Y. Amelia, “PERBANDINGAN METODE MACHINE LEARNING UNTUK MENDETEKSI PENYAKIT JANTUNG,” IDEALIS Indones. J. Inf. Syst., vol. 6, no. 2, pp. 220–225, Jul. 2023, doi: 10.36080/idealis.v6i2.3043.

[15] D. Pardede, B. H. Hayadi, and Iskandar, “Kajian Literatur Multi Layer Perceptron Seberapa Baik Performa Algoritma Ini,” J. ICT Apl. Syst., vol. 1, no. 1, pp. 23–35, Jun. 2022, doi: 10.56313/.v1i1.127.

[16] A. Saboor, M. Usman, S. Ali, A. Samad, M. F. Abrar, and N. Ullah, “A Method for Improving Prediction of Human Heart Disease Using Machine Learning Algorithms,” Mob. Inf. Syst., vol. 2022, pp. 1–9, Mar. 2022, doi: 10.1155/2022/1410169.

[17] F. Gurcan and A. Soylu, “Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis,” Cancers (Basel)., vol. 16, no. 19, p. 3417, Oct. 2024, doi: 10.3390/cancers16193417.

[18] K. Ghosh, C. Bellinger, R. Corizzo, P. Branco, B. Krawczyk, and N. Japkowicz, “The class imbalance problem in deep learning,” Mach. Learn., vol. 113, no. 7, pp. 4845–4901, Jul. 2024, doi: 10.1007/s10994-022-06268-8.

[19] F. Yang, K. Wang, L. Sun, M. Zhai, J. Song, and H. Wang, “A hybrid sampling algorithm combining synthetic minority over-sampling technique and edited nearest neighbor for missed abortion diagnosis,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 344, Dec. 2022, doi: 10.1186/s12911-022-02075-2.

[20] T.-T.-H. Le, Y. Shin, M. Kim, and H. Kim, “Towards unbalanced multiclass intrusion detection with hybrid sampling methods and ensemble classification,” Appl. Soft Comput., vol. 157, p. 111517, May 2024, doi: 10.1016/j.asoc.2024.111517.

[21] D. Elreedy, A. F. Atiya, and F. Kamalov, “A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning,” Mach. Learn., vol. 113, no. 7, pp. 4903–4923, Jul. 2024, doi: 10.1007/s10994-022-06296-4.

[22] A. G. Putrada, M. Abdurohman, D. Perdana, and H. H. Nuha, “Shuffle Split-Edited Nearest Neighbor: A Novel Intelligent Control Model Compression for Smart Lighting in Edge Computing Environment,” 2023, pp. 219–227.

[23] G. Husain et al., “SMOTE vs. SMOTEENN: A Study on the Performance of Resampling Algorithms for Addressing Class Imbalance in Regression Models,” Algorithms, vol. 18, no. 1, p. 37, Jan. 2025, doi: 10.3390/a18010037.

[24] F. Farahnakian et al., “Addressing imbalanced data for machine learning based mineral prospectivity mapping,” Ore Geol. Rev., vol. 174, p. 106270, Nov. 2024, doi: 10.1016/j.oregeorev.2024.106270.

[25] F. Yazdi and S. Asadi, “Enhancing Cardiovascular Disease Diagnosis: The Power of Optimized Ensemble Learning,” IEEE Access, vol. 13, pp. 46747–46762, 2025, doi: 10.1109/ACCESS.2025.3550015.

[26] Q. H. Nguyen et al., “Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil,” Math. Probl. Eng., vol. 2021, pp. 1–15, Feb. 2021, doi: 10.1155/2021/4832864.

[27] A. Buabeng, A. Simons, N. K. Frempong, and Y. Y. Ziggah, “A novel hybrid predictive maintenance model based on clustering, smote and multi-layer perceptron neural network optimised with grey wolf algorithm,” SN Appl. Sci., vol. 3, no. 5, p. 593, May 2021, doi: 10.1007/s42452-021-04598-1.

[28] N. Tavakolizadeh and M. Bagheri, “Multi-attribute Selection for Salt Dome Detection Based on SVM and MLP Machine Learning Techniques,” Nat. Resour. Res., vol. 31, no. 1, pp. 353–370, Feb. 2022, doi: 10.1007/s11053-021-09973-8.

[29] M. Desai and M. Shah, “An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN),” Clin. eHealth, vol. 4, pp. 1–11, 2021, doi: 10.1016/j.ceh.2020.11.002.

[30] J. Zhang, C. Li, Y. Yin, J. Zhang, and M. Grzegorzek, “Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer,” Artif. Intell. Rev., vol. 56, no. 2, pp. 1013–1070, Feb. 2023, doi: 10.1007/s10462-022-10192-7.

Downloads

Published

2025-06-26

How to Cite

[1]
Erliyan Redy Susanto and Erik Saputra, “Implementation of Deep Learning with Multilayer Perceptron (MLP) for Heart Disease Prediction Using the SMOTE-ENN Technique”, JAIC, vol. 9, no. 3, pp. 1034–1041, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.