Generative AI Image Sentiment Analysis on Social Media X using TF-IDF and FastText

Authors

  • Rahman Saputra Universitas Amikom Yogyakarta
  • Yoga Pristyanto Universitas Amikom Yogyakarta
  • Ika Nur Fajri Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.30871/jaic.v9i5.10627

Keywords:

Sentiment Analysis, AI-Generated Images, Social Media X, Complement Naïve Bayes, Support Vector Machine, TF-IDF, FastText, SMOTE

Abstract

This research investigates public opinion on AI-generated images on Social Media X using machine learning-driven text classification. Three classification models were evaluated: Complement Naïve Bayes (CNB) utilizing TF-IDF features, Support Vector Machine (SVM) merging TF-IDF with FastText embeddings, and IndoBERT as a modern transformer-based baseline. A total of 1,958 Indonesian tweets were collected via web scraping with relevant keywords, followed by a pipeline involving text cleaning, manual labeling into positive, negative, and neutral categories, and data balancing using the Synthetic Minority Over-sampling Technique (SMOTE) for the classical models (with class weighting applied for IndoBERT). Results show that the SVM model outperformed the others, achieving 68.7% accuracy with average precision, recall, and F1-score of 0.69, 0.69, and 0.68, respectively; CNB attained 64.1% accuracy with average metrics of 0.64; while IndoBERT recorded 58.2% accuracy with average precision, recall, and F1-score of 0.58, 0.58, and 0.57. Confusion matrix analysis revealed SVM's superior ability to distinguish positive and neutral sentiments in casual language, though IndoBERT demonstrated potential for capturing deeper semantic nuances despite underperforming due to dataset size and informal text. The findings highlight the efficacy of integrating statistical and semantic representations for improved sentiment analysis on unstructured, noisy social media data related to AI-generated imagery, while suggesting that transformer models like IndoBERT may benefit from larger datasets for optimal performance.

Downloads

Download data is not yet available.

References

[1] A. D. Pratama and H. Hendry, “Analisa Sentimen Masyarakat Terhadap Penggunaan Chatgpt Menggunakan Metode Support Vector Machine (SVM),” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 1, pp. 327–338, Feb. 2024, doi: 10.29100/jipi.v9i1.4285.

[2] Mukti M Kusairi and Surya Agustian, “SVM Method with FastText Representation Feature for Classification of Twitter Sentiments Regarding the Covid-19 Vaccination Program,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, Nov. 2022, doi: https://doi.org/10.31849/digitalzone.v13i2.11531.

[3] Y. K. Sari, F. Rozi, S. Muhyiddin, and F. Sukmana, “Sentiment Analysis Of Public Opinion On Application X (Twitter) In Indonesia Against Chatgpt Using Naïve Bayes Algorithm,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 4, pp. 2473–2484, Dec. 2024, doi: 10.29100/jipi.v9i4.7052.

[4] F. Matheos Sarimole and K. Kudrat, “Analisis Sentimen Terhadap Aplikasi Satu Sehat Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” Jurnal Sains dan Teknologi, vol. 5, no. 3, pp. 783–790, Feb. 2024, doi: 10.55338/saintek.v5i3.2702.

[5] R. F. Rahmanda, Y. Sibaroni, and S. S. Prasetiyowati, “Effectiveness of Bi-GRU and FastText in Sentiment Analysis of Shopee App Reviews,” Sinkron, vol. 9, no. 1, pp. 444–454, Feb. 2025, doi: 10.33395/sinkron.v9i1.14474.

[6] Muhammad Afif Raihan and Erwin Budi Setiawan, “Aspect Based Sentiment Analysis with FastText Feature Expansion and Support Vector Machine Method on Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 591–598, Aug. 2022, doi: 10.29207/resti.v6i4.4187.

[7] Moh Hadi Subowo and Farrikh Alzami, “Using 2024 election twitter data, sentiment analysis based on TF-IDF and Naïve Bayes,” MONETER: Jurnal Keuangan dan Perbankan, vol. 12, Jul. 2024, doi: https://doi.org/10.32832/moneter.v12i2.789.

[8] T. Safitri, Y. Umaidah, and I. Maulana, “Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine,” Journal of Applied Informatics and Computing, vol. 7, no. 1, pp. 28–35, Jul. 2023, doi: 10.30871/jaic.v7i1.5039.

[9] D. R. Wijaya, G. M. A. Sasmitha, and W. O. Vihikan, “Sentiment Analysis of Indonesian Citizens on Electric Vehicle Using FastText and BERT Method,” Journal of Information Systems and Informatics, vol. 6, no. 3, pp. 1360–1372, Sep. 2024, doi: 10.51519/journalisi.v6i3.784.

[10] Inggit Restu Illahi and E. B. Setiawan, “Sentiment Analysis on Social Media Using Fasttext Feature Expansion and Recurrent Neural Network (RNN) with Genetic Algorithm Optimization,” International Journal on Information and Communication Technology (IJoICT), vol. 10, no. 1, pp. 78–89, Jun. 2024, doi: 10.21108/ijoict.v10i1.905.

[11] N. Z. B. Jannah and K. Kusnawi, “Comparison of Naïve Bayes and SVM in Sentiment Analysis of Product Reviews on Marketplaces,” Sinkron, vol. 8, no. 2, pp. 727–733, Mar. 2024, doi: 10.33395/sinkron.v8i2.13559.

[12] I. Hendrawan Rifky, E. Utami, and A. Hartanto Dwi, “Analisis Perbandingan Metode Tf-Idf dan Word2vec pada Klasifikasi Teks Sentimen Masyarakat Terhadap Produk Lokal di Indonesia,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 11, no. 3, Jul. 2022, doi: 10.30591/smartcomp.v11i3.3902.

[13] A. Putri, S. Agustian, I. Afrianty, and F. Sains dan Teknologi, “Eksplorasi Fitur Fasttext, Tf-Idf Dan Indobert Pada Metode K-Nearest Neighbor Untuk Klasifikasi Sentimen,” 2025.

[14] M. R. Manoppo et al., “Analisis Sentimen Publik Di Media Sosial Terhadap Kenaikan Ppn 12% Di Indonesia Menggunakan Indobert,” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 4, no. 2, pp. 152–163, May 2025, doi: 10.69916/jkbti.v4i2.322.

[15] S. Aras, M. Yusuf, R. Y. Ruimassa, E. A. B. Wambrauw, and E. B. Pala’langan, “Sentiment Analysis on Shopee Product Reviews Using IndoBERT,” Journal of Information Systems and Informatics, vol. 6, no. 3, pp. 1616–1627, Sep. 2024, doi: 10.51519/journalisi.v6i3.814.

[16] S. M. Anugerah, R. Wijaya, and M. A. Bijaksana, “Sentimen Analysis Social Media for Disaster using Naïve Bayes and IndoBERT,” INTEK: Jurnal Penelitian, vol. 11, no. 1, pp. 51–58, Apr. 2024, doi: 10.31963/intek.v11i1.4771.

[17] M. Mustasaruddin, E. Budianita, M. Fikry, and F. Yanto, “Klasifikasi Sentiment Review Aplikasi MyPertamina Menggunakan Word Embedding FastText dan SVM (Support Vector Machine),” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 3, p. 526, Mar. 2023, doi: 10.30865/json.v4i3.5695.

[18] T. Widyanto, I. Ristiana, and A. Wibowo, “Komparasi Naïve Bayes dan SVM Analisis Sentimen RUU Kesehatan di Twitter,” SINTECH (Science and Information Technology) Journal, vol. 6, no. 3, pp. 147–161, Dec. 2023, doi: 10.31598/sintechjournal.v6i3.1433.

[19] U. I. Arsyah, M. Pratiwi, and A. Muhammad, “Twitter Sentiment Analysis of Public Space Opinions using SVM and TF-IDF Methods,” Indonesian Journal of Computer Science, vol. 13, no. 1, Feb. 2024, doi: 10.33022/ijcs.v13i1.3594.

[20] D. A. Kristiyanti and Sri Hardani, “Sentiment Analysis of Public Acceptance of Covid-19 Vaccines Types in Indonesia using Naïve Bayes, Support Vector Machine, and Long Short-Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 722–732, Jun. 2023, doi: 10.29207/resti.v7i3.4737.

[21] D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, “Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction,” J. Sistem Info. Bisnis, vol. 13, no. 1, pp. 1–9, Jun. 2023, doi: 10.21456/vol13iss1pp1-9.

[22] M. A. Saddam, E. Kurniawan D, and I. Indra, “Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 226–233, Sep. 2023, doi: 10.30591/jpit.v8i3.4884.

[23] R. A. Sitorus and I. Zufria, “Application of the Naïve Bayes Algorithm in Sentiment Analysis of Using the Shopee Application on the Play Store,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 15, no. 1, pp. 53–66, May 2024, doi: 10.31849/digitalzone.v15i1.19828.

[24] N. A. Maulana and D. Darwis, “Perbandingan Metode SVM dan Naïve Bayes untuk Analisis Sentimen pada Twitter tentang Obesitas di Kalangan Gen Z,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 3, pp. 655–666, Mar. 2025, doi: 10.52436/1.jpti.691.

[25] S. A. Amira, S. Utama, and M. H. Fahmi, “Penerapan Metode Support Vector Machine untuk Analisis Sentimen pada Review Pelanggan Hotel,” Edu Komputika Journal, vol. 7, no. 2, pp. 40–48, Dec. 2020, doi: 10.15294/edukomputika.v7i2.42608.

[26] M. F. Madjid, D. E. Ratnawati, and B. Rahayudi, “Sentiment Analysis on App Reviews Using Support Vector Machine and Naïve Bayes Classification,” Sinkron, vol. 8, no. 1, pp. 556–562, Feb. 2023, doi: 10.33395/sinkron.v8i1.12161.

Downloads

Published

2025-10-13

How to Cite

[1]
R. Saputra, Y. Pristyanto, and I. N. Fajri, “Generative AI Image Sentiment Analysis on Social Media X using TF-IDF and FastText”, JAIC, vol. 9, no. 5, pp. 2509–2520, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.