Sentiment Analysis of Public Comments on X Social Media Related to Israeli Product Boycotts Using The Long Short-Term Memory (LSTM) Method

Authors

  • Pitra Rahmadani Panggabean Universitas Malikussaleh
  • Asrianda Asrianda Universitas Malikussaleh
  • Hafizh Al-Kausar Aidilof Universitas Malikussaleh

DOI:

https://doi.org/10.30871/jaic.v9i3.9458

Keywords:

Sentiment Analysis, Boycott, Long Short-Term Memory (LSTM), Social Media, Public Opinion, X API, TF-IDF, Israeli-Palestinian Conflict, Text Classification, Public Policy

Abstract

The boycott of Israeli products is a widely discussed issue on social media, particularly on X. This study aims to analyze public sentiment regarding the boycott using the Long Short-Term Memory (LSTM) method. Data was collected via the X API, resulting in 800 comments after cleaning and removing duplicates from initially 980 crawled datasets. LSTM was chosen for this analysis due to its superior ability to process sequential data like text and effectively capture long-term dependencies in natural language, which is crucial for accurate sentiment classification. Data was processed through preprocessing steps, sentiment labeling, and Term Frequency-Inverse Document Frequency (TF-IDF) weighting before being fed into the LSTM model. Sentiment was classified into three categories: positive, negative, and neutral. Model evaluation was conducted using accuracy, precision, recall, and F1-score metrics. The results show that the LSTM model achieved an accuracy of 80.62%, with negative sentiment dominating, followed by neutral and positive. This study demonstrates that the LSTM method effectively classifies public sentiment and can be applied to inform public policy decisions, map public opinion trends, and monitor responses to foreign policy issues related to the Israeli-Palestinian conflict.

Downloads

Download data is not yet available.

References

[1] Aswir F Badjodah, Mahmud Husen, dan Saiful Ahmad, “Dinamika Konflik Dan Upaya Konsensus Palestina-Israel (Studi Kasus Perjanjian Perdamaian Oslo (Oslo Agreement ) Tahun 1993),” J. Cakrawala Ilm., vol. 1, no. 3, hal. 409–420, 2021, doi: 10.53625/jcijurnalcakrawalaindonesia.v1i3.619.

[2] R. R. Armayani, L. C. Tambunan, R. M. Siregar, N. R. Lubis, dan A. Azahra, “Analisis Peran Media Sosial Instagram Dalam Meningkatkan Penjualan Online,” J. Pendidik. Tembusai Fak. Ilmu Pendidik. Univ. Pahlawan, vol. 5, no. 3, hal. 8920–8928, 2021, [Daring]. Tersedia pada: https://jptam.org/index.php/jptam/article/view/2400

[3] Ade Dwi Dayani, Yuhandri, dan G. Widi Nurcahyo, “Analisis Sentimen Terhadap Opini Publik pada Sosial Media Twitter Menggunakan Metode Support Vector Machine,” J. KomtekInfo, vol. 11, hal. 1–10, 2024, doi: 10.35134/komtekinfo.v11i1.439.

[4] A. Kaharudin, A. A. Supriyadi, dan ..., “Analisis Sentimen pada Media Sosial dengan Teknik Kecerdasan Buatan Naïve Bayes: Kajian Literatur Review,” OKTAL J. Ilmu …, vol. 2, no. 6, hal. 1642–1649, 2023, [Daring]. Tersedia pada: https://journal.mediapublikasi.id/index.php/oktal/article/view/2944%0Ahttps://journal.mediapublikasi.id/index.php/oktal/article/download/2944/1371

[5] I. Budi, Analisis Media Sosial Sebagai Upaya Dini Deteksi Potensi Konflik Masyarakat di Dunia Maya. 2023. [Daring]. Tersedia pada: https://dgb.ui.ac.id/wp-content/uploads/123/2023/12/buku-pidato-Prof.-Indra-Budi.pdf

[6] Ade Tiara Susilawati, Nur Anjeni Lestari, and Puput Alpria Nina, “Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes”, NianTanaSikka, vol. 2, no. 1, pp. 26–35, Dec. 2023, [Daring]. Tersedia pada: https://doi.org/10.59603/niantanasikka.v2i1.240

[7] A. R. Isnain, H. Sulistiani, B. M. Hurohman, A. Nurkholis, dan S. Styawati, “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” J. Edukasi dan Penelit. Inform., vol. 8, no. 2, hal. 299, 2022, doi: 10.26418/jp.v8i2.54704.

[8] S. F. C. Haviana dan B. S. W. Poetro, “Deep Learning Model for Sentiment Analysis on Short Informal Texts,” Indones. J. Electr. Eng. Informatics, vol. 10, no. 1, hal. 82–89, 2022, doi: 10.52549/ijeei.v10i1.3181.

[9] T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 5, hal. 178–185, 2022, doi: 10.30865/klik.v2i5.362.

[10] Y. Akbar dan T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes” J. Sains dan Teknol., vol. 5, no. 1, hal. 115–122, 2023, [Daring]. Tersedia pada: https://doi.org/10.55338/saintek.v4i3.1368

[11] M. T. Mixue, “Jurnal Indonesia : Manajemen Informatika dan Komunikasi Perbandingan Implementasi Metode Smote Pada Algoritma Support Vector Machine ( SVM ) Dalam Analisis Sentimen Opini Jurnal Indonesia : Manajemen Informatika dan Komunikasi,” vol. 4, no. 3, hal. 849–855, 2023.

[12] M. Z. Rahman, Y. A. Sari, dan N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, hal. 5120–5127, 2021, [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id

[13] D. R. Alghifari, M. Edi, dan L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” J. Manaj. Inform., vol. 12, no. 2, hal. 89–99, 2022, doi: 10.34010/jamika.v12i2.7764.

[14] N. Adina, Sentimen Analisis Multi-Label Pada Ujaran Kebencian Dan Umpatan Di Twitter Indonesia Menggunakan Pendekatan Deep Learning. 2020.

[15] A. Tholib dan Z. Arifin, “Analisis Sentimen Terhadap Ulasan Aplikasi Shopee di Google Play Store Menggunakan Metode TF-IDF dan Long Short-Term Memory ( LSTM ),” vol. 6, no. 2, hal. 371–381, 2024, doi: 10.33650/jeecom.v4i2.

Downloads

Published

2025-06-05

How to Cite

[1]
P. R. Panggabean, A. Asrianda, and H. A.-K. Aidilof, “Sentiment Analysis of Public Comments on X Social Media Related to Israeli Product Boycotts Using The Long Short-Term Memory (LSTM) Method”, JAIC, vol. 9, no. 3, pp. 775–783, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.