Implementation of Support Vector Machine for Classifying User Reviews on the Sentuh Tanahku Application

Authors

  • Ayu Febriani Universitas Islam Negeri Walisongo
  • Khotibul Umam Universitas Islam Negeri Walisongo Semarang
  • Mokhammad Iklil Mustofa Universitas Islam Negeri Walisongo Semarang

DOI:

https://doi.org/10.30871/jaic.v9i4.9832

Keywords:

Support Vector Machine, Review Analysis, Sentuh Tanahku Application

Abstract

User reviews play a crucial role in the development of digital public service applications, as they reflect user satisfaction and service quality. This study aims to classify user reviews of the Sentuh Tanahku application into two sentiment categories, namely positive and negative, by applying the Support Vector Machine (SVM) algorithm. A total of 13,231 reviews obtained from Kaggle were processed through text preprocessing stages including case folding, tokenizing, stopword removal, and stemming. The TF-IDF technique was employed to convert text data into numerical vectors, followed by classification using SVM with hyperparameter tuning via RandomizedSearchCV. The evaluation results showed that the SVM model achieved an accuracy of 91% on training data and 84% on testing data. To assess its performance, the study compared SVM with baseline algorithms, namely Naïve Bayes and Logistic Regression. The comparison revealed that Logistic Regression and Naïve Bayes outperformed SVM with accuracy scores of 88.84% and 88.68%, respectively. Despite this, SVM remained competitive in maintaining balanced metrics across both classes. These findings highlight that algorithm performance in sentiment classification is highly influenced by the nature of the dataset. This study is expected to contribute as a reference for improving user opinion analysis methods in Indonesian-language public service applications.

Downloads

Download data is not yet available.

References

[1] A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, Jun. 2022, doi: 10.35957/jatisi.v9i2.1835.

[2] I. Salsabila and Y. Sibaroni, “Multi Aspect Sentiment of Beauty Product Reviews using SVM and Semantic Similarity,” J. RESTI (Rekayasa Sist. Dan Teknol. Informasi), vol. 5, no. 3, pp. 520–526, 2021.

[3] Suswadi and M. Erkamin, “Sentiment Analysis of Shopee App Reviews Using Random Forest and Support Vector Machine,” Ilk. J. Ilm., vol. 15, no. 3, 2023.

[4] H. Mustakim and S. Priyanta, “Aspect-Based Sentiment Analysis of KAI Access Reviews Using NBC and SVM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, p. 113, Apr. 2022, doi: 10.22146/ijccs.68903.

[5] A. Lowell, A. Lowell, K. Candra, and E. Indra, “Perbandingan Metode Support Vector Machine (SVM) Dan Naive Bayes Pada Analisis Sentimen Ulasan Aplikasi OVO,” J. Media Inform., vol. 6, no. 2, pp. 896–905, 2025.

[6] G. T. Fadilah, L. Muflikhah, and R. S. Prdana, “Analisis Sentimen Produk Hijab Pada E-Commerce Tokopedia Menggunakan Algoritma Support Vector Machine dan IndoBERT Embedding,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 2, 2025, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14390

[7] D. Pramono and N. Y. Setiawan, “Analisis Sentimen Pengguna Media Sosial X Terhadap Merdeka Belajar Kampus Merdeka Menggunakan Metode Support Vector Machine(SVM) Authors Djoko Pramono,” J. Ilm. Inform. Glob., vol. 16, no. 1, pp. 42–49, 2025.

[8] N. Hadi and D. Sugiarto, “Analisis Sentimen Pembangunan IKN pada Media Sosial X Menggunakan Algoritma SVM, Logistic Regression dan Naïve Bayes,” J. Inform. J. Pengemb. IT, vol. 10, no. 1, pp. 37–49, Jan. 2025, doi: 10.30591/jpit.v10i1.7106.

[9] F. Y. A’la, “Optimasi Klasifikasi Sentimen Ulasan Game Berbahasa Indonesia: IndoBERT dan SMOTE untuk Menangani Ketidakseimbangan Kelas,” J. Pendidik. Inform., vol. 9, no. 1, pp. 256–265, 2025.

[10] Khairunnisa, S. Dewi, D. Rahmawati, and A. Sari, “Analisis Sentimen Komentar pada Postingan Instagram ‘StandWithUs’ Menggunakan Klasifikasi Naive Baye,” J. Ilm. Inform., vol. 12, no. 2, 2024.

[11] M. Z. Siregar, A. M. Elhanafi, and D. Irwan, “Analisis Sentimen Terhadap Ulasan Aplikasi Media Sosial Di Google Play Menggunakan Algoritma Naive Bayes,” Inform. J. Mhs. Tek., vol. 9, no. 2, 2025.

[12] I. D. Hardyatman and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Rencana Kenaikan PPN 12% Di Indonesia Pada Media Sosial X Menggunakan Metode Decision Tree,” J. Inf. Syst. Res., vol. 6, no. 2, pp. 1126–1134, 2025.

[13] M. S. Raiya, M. R. P. Khamil, N. Fadillah, and R. A. Saputra, “Implementasi Algoritma Long Short-Term Memory Pada Isu Kenaikan Uang Kuliah Tunggal Terhadap Minat Kuliah,” J. Inform. Terpadu, vol. 11, no. 1, pp. 37–43, 2025.

[14] N. W. S. Saraswati, C. P. Yanti, I. D. M. K. Muku, and D. A. P. R. Dewi, “Evaluation Analysis of the Necessity of Stemming and Lemmatization in Text Classification,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 24, no. 2, pp. 321–332, Mar. 2025, doi: 10.30812/matrik.v24i2.4833.

[15] I. Hammad and K. El-Sankary, “Practical Considerations for Accuracy Evaluation in Sensor-Based Machine Learning and Deep Learning,” Sensors, vol. 19, no. 16, p. 3491, Aug. 2019, doi: 10.3390/s19163491.

[16] M. Bounabi, K. Elmoutaouakil, and K. Satori, “A new neutrosophic TF-IDF term weighting for text mining tasks: text classification use case,” Int. J. Web Inf. Syst., vol. 17, no. 3, pp. 229–249, Jul. 2021, doi: 10.1108/IJWIS-11-2020-0067.

[17] D. Pangestu, N. N. Zakiyyah, N. Fauziah, Z. Rahayu, and I. H. Ikasari, “Literature Review: Perbandingan Metode Klasifikasi Dalam Data Mining,” JRIIN J. Ris. Inform. Dan Inov., vol. 1, no. 11, 2024.

[18] D. B. M. Zebua and D. I. B. Gede, “Analisis Sentimen Ulasan Aplikasi Citilink Menggunakan Metode Support Vector Machine dengan TF-IDF,” J. Nas. Teknol. Inf. dan Apl., vol. 3, no. 2, pp. 439–446, 2025.

[19] Y. Lv, “Support vector machine (SVM) algorithm optimization and innovative talent matching model for employment needs,” J. Comput. Methods Sci. Eng., vol. 25, no. 4, pp. 3713–3724, Jul. 2025, doi: 10.1177/14727978251325084.

[20] I. S. Al-Mejibli, J. K. Alwan, and D. H. Abd, “The effect of gamma value on support vector machine performance with different kernels,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, p. 5497, Oct. 2020, doi: 10.11591/ijece.v10i5.pp5497-5506.

Downloads

Published

2025-08-06

How to Cite

[1]
A. Febriani, Khotibul Umam, and Mokhammad Iklil Mustofa, “Implementation of Support Vector Machine for Classifying User Reviews on the Sentuh Tanahku Application”, JAIC, vol. 9, no. 4, pp. 1551–1558, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.