Implementation of the Support Vector Machine (SVM) Method for Classifying the Maturity Level of Oil Palm Fruit
DOI:
https://doi.org/10.30871/jaic.v9i5.10783Keywords:
Palm Fruit, Ripeness detection, Image Processing, SVM, AccuracyAbstract
This study discusses the classification of palm fruit ripeness levels using the Support Vector Machine (SVM) method. Palm fruit ripeness significantly affects the yield and quality of the oil produced. By utilizing image processing techniques, colour and texture features are extracted from the fruit images to support the classification process. The SVM model was trained with a dataset covering various ripeness levels, including unripe, ripe, overripe, and rotten. The evaluation results show the high accuracy of the SVM model in identifying ripeness levels. This study highlights the potential of machine learning technology in improving the productivity and quality of agricultural products. Support Vector Machine (SVM) is a machine learning method used to classify data into categories by finding the optimal dividing line between two classes, thereby maximizing the distance between the data from the two classes. SVM itself has proven to be very effective in detecting images, as evidenced by several studies such as detecting the ripeness level of melon fruit, each producing a model with an accuracy level above 86%. Thus, this study uses SVM suitable for use in detecting the ripeness level of oil palm fruit. This study produced an SVM model with an accuracy level of 93%.
Downloads
References
[1] S. I. Guslianto and S. ‘Uyun, “Klasifikasi Kematangan Buah Sawit Berdasarkan Fitur Warna, Bentuk dan Tekstur Menggunakan Algoritma K-NN,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 9, no. 3, p. 407, 2023, doi: 10.26418/jp.v9i3.64877.
[2] R. Mustajab, “2023, Data Sebaran Produksi Kelapa Sawit di Indonesia pada,” 2024.
[3] S. Ashari, G. J. Yanris, and I. Purnama, “Oil Palm Fruit Ripeness Detection using Deep Learning,” Sinkron, vol. 7, no. 2, pp. 649–656, 2022, doi: 10.33395/sinkron.v7i2.11420.
[4] E. F. Himmah, M. Widyaningsih, and M. Maysaroh, “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering,” Jurnal Sains dan Informatika, vol. 6, no. 2, pp. 193–202, Dec. 2020, doi: 10.34128/jsi.v6i2.242.
[5] S. Ashari, G. J. Yanris, and I. Purnama, “Oil Palm Fruit Ripeness Detection using Deep Learning,” Sinkron, vol. 7, no. 2, pp. 649–656, May 2022, doi: 10.33395/sinkron.v7i2.11420.
[6] S. Saadah, F. Z. Z, and H. H. Z, “Support Vector Regression (SVR) Dalam Memprediksi Harga Minyak Kelapa Sawit di Indonesia dan Nilai Tukar Mata Uang EUR/USD,” Journal of Computer Science and Informatics Engineering (J-Cosine), vol. 5, no. 1, pp. 85–92, Jun. 2021, doi: 10.29303/jcosine.v5i1.403.
[7] S. I. Guslianto and S. ‘Uyun, “Klasifikasi Kematangan Buah Sawit Berdasarkan Fitur Warna, Bentuk dan Tekstur Menggunakan Algoritma K-NN,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 9, no. 3, p. 407, Dec. 2023, doi: 10.26418/jp.v9i3.64877.
[8] I. U. P. Rangkuti and A. Syahputra, “Warna Minyak Sawit Mentah Dan Stabilitas Warna Berdasarkan Tingkat Kematangan Buah Yang Berasal Dari Kebun Dengan Ketinggian 800 MDPL,” Jurnal Agro Fabrica, vol. 1, no. 2, pp. 34–39, Dec. 2019, doi: 10.47199/jaf.v1i2.90.
[9] Feny Rahmadhania, P. Sembiring, and Marshal Arifin Sinaga, “Pengaruh Kematangan Buah Kelapa Sawit Varietas Dxp Bah Lias Terhadap Kadar Minyak Sawit Mentah (CPO),” Jurnal Agro Estate, vol. 3, no. 1, pp. 1–9, Feb. 2019, doi: 10.47199/jae.v3i1.56.
[10] A. Wibowo, P. Poningsih, I. Parlina, S. Suhada, and A. Wanto, “Rancang Bangun Mesin Sortir Buah Kelapa Sawit Berdasarkan Tingkat Kematangan Menggunakan Sensor Warna Tcs3200 Berbasis Arduino Uno,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 1, no. 2, pp. 9–15, May 2022, doi: 10.55123/storage.v1i2.305.
[11] R. K. Dewi and panji Fahreza, “Pemanenan Kelapa Sawit (Elaeis guineensis Jacq.) dengan Sistem Spesialisasi dan Mekanisasi,” pp. 123–129, 2019, doi: 10.25047/agropross.2019.532.
[12] D. Yanuardi, Saktioto, R. F. Syahputra, Defrianto, and Y. Soerbakti, “Analisis Tingkat Kematangan Buah Sawit Dengan Injeksi Tegangan Searah,” Komunikasi Fisika Indonesia Edisi, vol. 20, no. 2, pp. 36–45, 2023, doi: https://doi.org/10.31258/jkfi.20.2.109-114.
[13] T. K. Mazdavilaya, F. Yanto, E. Budianita, S. Sanjaya, and F. Syafria, “Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit,” KLIK: Kajian Ilmiah Informatika Dan Komputer, vol. 4, no. 6, pp. 2881–2891, 2024.
[14] M. Y. M. A. Mansour, K. D. Dambul, and K. Y. Choo, “Object Detection Algorithms for Ripeness Classification of Oil Palm Fresh Fruit Bunch,” International Journal of Technology, vol. 13, no. 6, p. 1326, Nov. 2022, doi: 10.14716/ijtech.v13i6.5932.
[15] N. P. Sutrisna et al., “Deteksi Tingkat Kematangan Buah Pepaya menggunakan Model Convolutional Neural Network,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 3, pp. 569–578, Jul. 2024, doi: 10.25126/jtiik.938119.
[16] B. K. , P. W, L. G. A. H., and B. A. Wibisono, Analisis Perbandingan Algoritma SVM dan CNN untuk Klasifikasi Buah. 2021, pp. 1–11.
[17] J. Zulkarnain, Kusrini, and T. Hidayat, “Klasifikasi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan Pendekatan Deep Learning,” JST (Jurnal Sains dan Teknologi), vol. 12, no. 3, Jan. 2024, doi: 10.23887/jstundiksha.v12i3.59140.
[18] R. Nanda, E. Haerani, S. K. Gusti, and S. Ramadhani, “Klasifikasi Berita Menggunakan Metode Support Vector Machine,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 5, no. 2, pp. 269–278, Apr. 2022, doi: 10.32672/jnkti.v5i2.4193.
[19] R. A. Sirait, G. Supriyanto, and Priyambada, “Pengaruh Kematangan Buah Terhadap FFA dan Besarnya Kandungan Minyak di Dalamnya Di Pabrik Kelapa Sawit,” Agroforetech, vol. 1, no. 1, pp. 676–684, 2023, Accessed: Aug. 07, 2025. [Online]. Available: https://jurnal.instiperjogja.ac.id/index.php/JOM/article/view/394
[20] A. Palanivinayagam, C. Z. El-Bayeh, and R. Damaševičius, “Twenty Years of Machine-Learning-Based Text Classification: A Systematic Review,” Algorithms, vol. 16, no. 5, p. 236, Apr. 2023, doi: 10.3390/a16050236.
[21] J. Rusman, B. Z. Haryati, and A. Michael, “Optimisasi Hiperparameter Tuning pada Metode Support Vector Machine untuk Klasifikasi Tingkat Kematangan Buah Kopi,” Jurnal Komputer dan Informatika, vol. 11, no. 2, pp. 195–202, Oct. 2023, doi: 10.35508/jicon.v11i2.12571.
[22] R. Mardianto, Stefanie Quinevera, and S. Rochimah, “Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga,” Journal of Applied Computer Science and Technology, vol. 5, no. 1, pp. 63–71, May 2024, doi: 10.52158/jacost.v5i1.742.
[23] K. Saputra, “Perbandingan Kinerja Fungsi Kernel Algoritma Support Vector Machine Pada Klasifikasi Penyakit Padi,” Ijccs, vol. 17, no. 1, pp. 119–131, 2023.
[24] S. K. Parinduri, R. Rosnelly, A. Purnama, A. Sihotang, and M. C. Adelina, “Perbandingan Algoritma Support Vector Machine Dan K-Nearest Neighbors Pada Kematangan Buah Sawit,” Device, vol. 13, no. 2, pp. 147–155, Nov. 2023, doi: 10.32699/device.v13i2.5400.
[25] R. Maneno, B. Baso, P. G. Manek, and K. Fallo, “Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur,” Journal of Information and Technology, vol. 3, no. 2, pp. 60–66, Sep. 2023, doi: 10.32938/jitu.v3i2.5323.
[26] B. Maulana Alfaruq, D. Erwanto, and I. Yanuartanti, “Klasifikasi Kematangan Buah Tomat Dengan Metode Support Vector Machine,” Generation Journal, vol. 7, no. 3, pp. 64–72, Nov. 2023, doi: 10.29407/gj.v7i3.21092.
[27] N. T. Alqoria and F. Utaminingrum, “Rancang Bangun Sistem Deteksi Kemanisan Buah Melon dengan Metode Gray Level Co-occurrence Matrix (GLCM) dan Support Vector Machine (SVM),” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 5, no. 6, pp. 2472–2477, 2021.
[28] A. Mahfud, A. Sugandhi, and E. Pashya, “Pemindai Tingkat Kematangan Tandan Buah Sawit Menggunakan Kamera Handphone Berbasis Android,” Jurnal Citra Widya Edukasi, vol. 13, no. 2, pp. 113–122, 2021.
[29] Eko Prasetyo, Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab, 2nd ed., vol. 4. 2012.
[30] R. Kurniawan, A. T. Martadinata, and S. D. Cahyo, “Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5,” Journal of Information System Research (JOSH), vol. 5, no. 1, pp. 302–309, Oct. 2023, doi: 10.47065/josh.v5i1.4408.
[31] A. Hamzah, E. Susanti, and R. M. Lestari, “Klasifikasi Kematangan Buah Alpukat Mentega Berdasarkan Fitur Warna Menggunakan Support Vector Machine,” Journal of Innovation And Future Technology (IFTECH), vol. 6, no. 1, pp. 108–120, Feb. 2024, doi: 10.47080/iftech.v6i1.3103.
[32] R. Manaek, Richardus Eko Indrajit, and Erick Dazki, “Arsitektur Perusahaan Untuk Infrastuktur Telekomunikasi Di Daerah Pedalaman Indonesia,” SATIN - Sains dan Teknologi Informasi, vol. 9, no. 2, pp. 01–11, Dec. 2023, doi: 10.33372/stn.v9i2.1000.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Boni Oktaviana, Suriati Suriati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








