Hierarchical Clustering of Education Indicators in Papua Island: A Ward’s Method Approach

Authors

  • Ifa Prastika Department of Mathematics, Universitas Negeri Padang
  • Devni Prima Sari Department of Mathematics, Universitas Negeri Padang

DOI:

https://doi.org/10.30871/jaic.v9i4.9740

Keywords:

Clustering, Education, Hierarchical, Ward

Abstract

Education development aims to ensure inclusive, equitable education and increase learning opportunities for all Indonesian citizens. Papua Island is still not an island with a high education level; data on education indicators indicate this in each Regency / City on the island of Papua, with a value below the national average. Identifying districts/cities is needed to improve education, so clustering is carried out using the Ward method. This research aims to group and map regencies/cities on the island of Papua based on education indicators. The results of this study are expected to be a consideration and benchmark for the government in making decisions regarding education in districts/cities on the island of Papua, considering the region's characteristics. This is an applied research with the data type used, namely secondary data on education indicators in Papua Island in 2022. Data sources are obtained from the official website of the Central Bureau of Statistics of each province on the island of Papua. Four education indicators are taken into account in this research, namely the School Participation Rate (SPR), the Gross Enrollment Rate (GER), the Net Enrollment Ratio (NER), and the Average Years of Schooling (AYS), which are then detailed into 10 variables. The cluster analysis process uses Euclidean distance and cluster validation using the Dunn Index. The results showed that 3 clusters formed. Cluster 1 consists of 27 districts/cities; this first group is classified as a high level of education. Cluster 2 consists of 7 districts/cities with a medium level of education, and Cluster 3 has eight districts/cities with a low level of education—cluster results based on the highest Dunn Index validation value of 0.414.

Downloads

Download data is not yet available.

References

[1] A. F. Dewi and K. Ahadiyah, “Agglomerative Hierarchy Clustering Pada Penentuan Kelompok Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Pendidikan,” Zeta-Math J., vol. 7, no. 2, pp. 57–63, 2022.

[2] Badan Pusat Statistik Papua, “Indeks Pendidikan Provinsi Papua Tahun 2023,” Badan Pus. Stat. Propinsi Papua, vol. 12, 2024.

[3] M. S. Ummah, “Pembangunan Bidang Pendidikan di Provinsi Papua 2023,” Sustain., vol. 11, no. 1, pp. 1–14, 2019, [Online]. Available:

[4] Supranto, Analisis Multivariat, 1st ed. Jakarta: Cipta, Rineka, 2004.

[5] S. Santoso, Statistik multivariat. Elex media komputindo, 2010.

[6] Purnomo et al., Analisis Data Multivariat. 2022.

[7] B. Everitt, Cluster analysis, vol. 14, no. 1. 1980. doi: 10.1007/BF00154794.

[8] K. R. Subbaswamy, “Brillouin Scattering From Thermal Fluctuations in Superionic Conductors.,” Solid State Commun., vol. 21, no. 4, pp. 371–372, 1977, doi: 10.1016/0038-1098(77)91248-0.

[9] D. Ls, Y. A. Lesnussa, M. W. Talakua, and M. Y. Matdoan, “Analisis Klaster untuk Pengelompokkan Kabupaten/Kota di Provinsi Maluku Berdasarkan Indikator Pendidikan dengan Menggunakan Metode Ward,” J. Stat. dan Apl., vol. 5, no. 1, pp. 51–60, 2021.

[10] R. Ramadani and A. Salma, “Metode Average Linkage Dan Ward Dalam Pengelom Pokan Kesejahteraan Sumatera Barat Tahun 2021,” J. Math. UNP, vol. 7, no. 3, pp. 11–24, 2022.

[11] J. H. Ward, “Hierarchical Grouping to Optimize an Objective Function,” Journal of the American Statistical Association, vol. 58, no. 301. pp. 236–244, 1963. doi: 10.1080/01621459.1963.10500845.

[12] D. T. Larose, “An introduction to data mining,” Trad. Adapt. Thierry Vallaud, p. 23, 2005.

[13] A. C.Rencher, Methods of Multivariate Analysis, vol. 11, no. 1. 2004. [Online]. Available: https://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf

[14] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, “An extensive comparative study of cluster validity indices,” Pattern Recognit., vol. 46, no. 1, pp. 243–256, 2013, doi: https://doi.org/10.1016/j.patcog.2012.07.021.

[15] J. C. Dunn†, “Well-Separated Clusters and Optimal Fuzzy Partitions,” J. Cybern., vol. 4, no. 1, pp. 95–104, Jan. 1974, doi: 10.1080/01969727408546059

[16] L. Kaufman and P. J. Rousseeuw, *Finding Groups in Data: An Introduction to Cluster Analysis*. Hoboken, NJ: Wiley, 2009.

[17] A. K. Jain and R. C. Dubes, *Algorithms for Clustering Data*. Prentice-Hall, 1988.

[18] D. Yim and K. T. Ramdeen, “Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data,” *The Quantitative Methods for Psychology*, vol. 11, no. 1, pp. 8–21, 2015

[19] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, “An extensive comparative study of cluster validity indices,” *Pattern Recognition*, vol. 46, no. 1, pp. 243–256, Jan. 2013.

Downloads

Published

2025-08-06

How to Cite

[1]
I. Prastika and D. P. Sari, “Hierarchical Clustering of Education Indicators in Papua Island: A Ward’s Method Approach”, JAIC, vol. 9, no. 4, pp. 1544–1550, Aug. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.