Comparison of Linkage Methods in Hierarchical Clustering for Grouping Districts/Cities in East Java Based on Stunting Determinants

Authors

  • Dinda Rima Rachcita Putri UIN Sunan Ampel Surabaya
  • Nurissaidah Ulinnuha UIN Sunan Ampel Surabaya
  • Putroue Kumala Intan UIN Sunan Ampel Surabaya

DOI:

https://doi.org/10.30871/jaic.v9i5.10919

Keywords:

Agglomerative Hierarchical Clustering, Stunting, Centroid Linkage

Abstract

Stunting is a long-term nutritional problem that generally occurs in children under five years old and is characterized by a shorter body than other children of the same age due to continuous dietary deficiencies. As a result of the Indonesian Health Survey (SKI) conducted in 2023, the stunting rate in East Java decreased to 17.7%. In 2024, the target is to reduce it to 14%. This study aims to group regencies and cities in East Java based on indicators of child nutritional status by using five linkage approaches in the hierarchical clustering method. This study found areas with similar causes of stunting so that intervention programs can be more targeted. The analysis showed that the centroid linkage methods formed two clusters with the highest cophenetic correlation coefficient of 0.8619. The first cluster consists of 37 regencies/cities with a low stunting category, and the second cluster consists of one regency/city with a high stunting category. The model in this clustering has a silhouette value of 0.6155, which indicates that the model is in the good category.

Downloads

Download data is not yet available.

References

[1] M. R. Anggraeni, U. Yudatama, dan M. Maimunah, “Clustering Prevalensi Stunting Balita Menggunakan Agglomerative Hierarchical Clustering,” mib, vol. 7, no. 1, hlm. 351, Jan 2023, doi: 10.30865/mib.v7i1.5501.

[2] C. G. Victora dkk., “Maternal and child undernutrition: consequences for adult health and human capital,” The Lancet, vol. 371, no. 9609, hlm. 340–357, Jan 2008, doi: 10.1016/S0140-6736(07)61692-4.

[3] World Health Organization, “Infant and young child feeding : model chapter for textbooks for medical students and allied health professionals,” hlm. 99, 2009.

[4] S. D. Raihannabil, “Penerapan Metode Hierarchical Clustering untuk Klasterisasi Provinsi di Indonesia berdasarkan Indikator Status Gizi Anak Baduta (Bawah Dua Tahun) Tahun 2023: Penerapan Metode Hierarchical Clustering untuk Klasterisasi Provinsi di Indonesia berdasarkan Indikator Status Gizi Anak Baduta (Bawah Dua Tahun) Tahun 2023,” ESDS, vol. 2, no. 3, hlm. 424–436, Okt 2024, doi: 10.20885/esds.vol2.iss.3.art32.

[5] K. Komalasari, E. Supriati, R. Sanjaya, dan H. Ifayanti, “Faktor-Faktor Penyebab Kejadian Stunting Pada Balita,” maj. kesehat. indones., vol. 1, no. 2, hlm. 51–56, Okt 2020, doi: 10.47679/makein.202010.

[6] A. N. A. M. Pertiwi dan L. Y. Hendrati, “Literature Review: Analisis Penyebab Kejadian Stunting Pada Balita Di Provinsi Jawa Timur,” Amnt, vol. 7, no. 2SP, hlm. 320–327, Des 2023, doi: 10.20473/amnt.v7i2SP.2023.320-327.

[7] S. Wulandari, “Clustering Indonesian Provinces on Prevalence of Stunting Toddlers Using Agglomerative Hierarchical Clustering,” FaktorExacta, vol. 16, no. 2, Jul 2023, doi: 10.30998/faktorexacta.v16i2.17186.

[8] Syahrul Aziz Pamungkas, “Implementasi Metode Agglomerative Hierarchical Dalam Penelitian Klasterisasi Indeks Khusus Penanganan Stunting”, 2024.

[9] D. Meilani, M. Masjkur, dan F. M. Afendi, “Grouping Provinces in Indonesia Based on the Causes of Stunting Variables using Hierarchical Clustering Analysis: Pengelompokan Provinsi di Indonesia Berdasarkan Peubah Penyebab Stunting Menggunakan Analisis Cluster Hierarki,” IJSA, vol. 7, no. 1, hlm. 32–43, Okt 2023, doi: 10.29244/ijsa.v7i1p32-43.

[10] S. Wulandari, “Clustering Kecamatan Di Kota Bandung Berdasarkan Indikator Jumlah Penduduk Dengan Menggunakan Algoritma K-Means,” 2020.

[11] G. R. Suraya dan A. W. Wijayanto, “Comparison of Hierarchical Clustering, K-Means, K-Medoids, and Fuzzy C-Means Methods in Grouping Provinces in Indonesia according to the Special Index for Handling Stunting: Perbandingan Metode Hierarchical Clustering, K-Means, K-Medoids, dan Fuzzy C-Means dalam Pengelompokan Provinsi di Indonesia Menurut Indeks Khusus Penanganan Stunting,” IJSA, vol. 6, no. 2, hlm. 180–201, Agu 2022, doi: 10.29244/ijsa.v6i2p180-201.

[12] Ersa Riga Puspita dan Mujiati Dwi Kartikasari, “Identifying The Cluster Of Families At Risk Of Stunting In Yogyakarta Using Hierarchical And Non-Hierarchical Approach,” kursor, vol. 12, no. 4, hlm. 159–166, Des 2024, doi: 10.21107/kursor.v12i4.358.

[13] A. Azzahra dan A. W. Wijayanto, “Comparison of Agglomerative Hierarchical and K-Means in Grouping Provinces Based on Maternal Health Services,” SISTEMASI, vol. 11, no. 2, hlm. 481, Mei 2022, doi: 10.32520/stmsi.v11i2.1829.

[14] E. I. Sebriana dan S. H. Hasanah, “Analisis Indikator Ketenagakerjaan Di Jawa Timur Tahun 2023 Dengan Pendekatan Clustering,” vol. 2, no. 1, 2025.

[15] I. Yahya, G. N. A. Wibawa, dan L. Laome, “Penggunaan Korelasi Cophenetic Untuk Pemilihan Metode Cluster Berhierarki Pada Mengelompokkan Kabupaten/Kota Berdasarkan Jenis Penyakit Di Provinsi Sulawesi Tenggara Tahun 2020,” 2022.

[16] I. Irwan, W. Sanusi, dan A. Hasanah, “Perbandingan Analisis Cluster Metode Complete Linkage dan Metode Ward dalam Pengelompokkan Indeks Pembangunan Manusia di Sulawesi Selatan,” JMATHCOS, vol. 7, no. 1, hlm. 75–86, Apr 2024, doi: 10.35580/jmathcos.v7i1.2089.

[17] R. J. Alfirdausy, N. Ulinnuha, dan Moh. Hafiyusholeh, “Analysis of Regency/City Human Development Index Data in East Java Through Grouping Using Hierarchical Agglomerative Clustering Method,” SISTEMASI, vol. 12, no. 3, hlm. 811, Sep 2023, doi: 10.32520/stmsi.v12i3.2959.

[18] Jurusan Matematika, Fakultas MIPA, Universitas Lampung dkk., “Simulasi Pemilihan Metode Analisis Cluster Hirarki Agglomerative Terbaik Antara Average Linkage Dan Ward Pada Data Yang Mengandung Masalah Multikolinearitas,” JSM, vol. 1, no. 2, Sep 2020, doi: 10.23960/jsm.v1i2.2497.

[19] N. Sari, H. Yasin, dan A. Prahutama, “Geographically Weighted Regression Principal Component Analysis (Gwrpca) Pada Pemodelan Pendapatan Asli Daerah Di Jawa Tengah”.

[20] R. G. Whendasmoro dan J. Joseph, “Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja Algoritma K-NN,” Jur. Ris. Kom., vol. 9, no. 4, hlm. 872, Agu 2022, doi: 10.30865/jurikom.v9i4.4526.

[21] S. Mishra dkk., “Principal Component Analysis,” Int. J. Livest. Res., hlm. 1, 2017, doi: 10.5455/ijlr.20170415115235.

[22] R. Silvi, “Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia,” JMM, vol. 4, no. 1, hlm. 22–31, Mei 2018, doi: 10.15642/mantik.2018.4.1.22-31.

[23] I. Yahya, G. N. A. Wibawa, dan L. Laome, “Penggunaan Korelasi Cophenetic Untuk Pemilihan Metode Cluster Berhierarki Pada Mengelompokkan Kabupaten/Kota Berdasarkan Jenis Penyakit Di Provinsi Sulawesi Tenggara Tahun 2020,” 2022.

[24] Krisman Pratama Simanjuntak dan Ulfa Khaira, “Pengelompokkan Titik Api Di Provinsi Jambi Dengan Algoritma Agglomerative Hierarchical Clustering: Hotspot Clustering in Jambi Province Using Agglomerative Hierarchical Clustering Algorithm,” Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, hlm. 7–16, Apr 2021.

[25] A. Tiara, M. R. Mujahid, dan N. P. Salsabila, “Analisis Klasterisasi Mengenai Tingkat Prevelensi Stunting di Jawa Barat Tahun 2023,” vol. 1, no. 1, 2025.

[26] D. Sartika, F. Elfaladonna, dan A. Octarina, “Kombinasi Hybrid K-Means Untuk Klasterisasi Multivariat Dalam Analisis Stunting,” Vol ., no. 1, 2025.

[27] F. S. P. Wiyono, L. Kaffi, M. H. Maulana, dan T. Damaliana, “Segmentasi Wilayah Provinsi di Indonesia Berdasarkan Indeks Penanganan Stunting Menggunakan PCA dan Partition Clustering,” 2025.

Downloads

Published

2025-10-08

How to Cite

[1]
D. R. R. Putri, N. Ulinnuha, and P. K. Intan, “Comparison of Linkage Methods in Hierarchical Clustering for Grouping Districts/Cities in East Java Based on Stunting Determinants”, JAIC, vol. 9, no. 5, pp. 2434–2442, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.