Implementation of Clustering Method Using K-Means Algorithm for Grouping BPJS Health Patient Medical Record Data
DOI:
https://doi.org/10.30871/jaic.v9i5.10046Keywords:
K-Means Clustering, Z-score, Medical Records, BPJS Health, RSUD SimeulueAbstract
Clustering medical record data of BPJS Health patients is essential in supporting data-driven decision-making in hospitals. This study aims to implement the K-Means algorithm to cluster patient medical records at RSUD Simeulue based on BPJS class and patient address variables. The data were first normalized using the Z-Score method to standardize variable scales, followed by the iterative application of the K-Means algorithm until convergence was reached at the sixth iteration. The study employed three Cluster, namely Cluster 1 (Very Many), Cluster 2 (Many), and Cluster 3 (Not Many). The final results show that Cluster 1 contains 258 patients from Class 1 and 292 from Class 2; Cluster 2 consists of 296 patients from Class 2; and Cluster 3 includes 101 patients from Class 1, 115 from Class 2, and 148 from Class 3. In addition to classification by BPJS class, clustering based on patient address revealed a dominant distribution from Simeulue Timur, Teluk Dalam, and Teupah Selatan sub-districts. The clustering results were implemented into a web-based information system using the Laravel framework and MySQL database, enabling hospital administrators to visualize and analyze patient data effectively. This study demonstrates that the K-Means algorithm can be effectively applied in classifying medical record data to support healthcare management decision-making.
Downloads
References
[1] W. Purba et al., “Penerapan Data Mining Untuk Pengelolaan Data Rekam Medis Menggunakan Metode K-means Clustering Pada Rumah Sakit Royal Prima Medan,” J. TEKINKOM, vol. 6, no. 1, hal. 158–168, 2023, doi: 10.37600/tekinkom.v6i1.857.
[2] N. Cahyana dan A. Aribowo, “Metode Data Mining K-Means Untuk Klasterisasi Data Penanganan Dan Pelayanan Kesehatan Masyarakat,” Semin. Nas. Inform. Medis, no. 5, hal. 24–31, 2018.
[3] D. Andreswari, R. Efendi, dan K. Prastio, “Clustering Data Rekam Medis untuk Penentuan Penyakit Endemi di Daerah Kabupaten Bengkulu Selatan dengan Mengimplementasikan Metode FUZZY C-MEANS,” J. Rekursif, vol. 11, no. 1, hal. 42–52, 2023, [Daring]. Tersedia pada: http://ejournal.unib.ac.id/index.php/rekursif/42
[4] W. Aulia, A. Putera Utama Siahaan, L. Marlina, dan M. Iqbal, “Analisis Algoritma K-Means Clustering Dalam Identifikasi Tingkat Risiko Penyakit Berdasarkan Data Rekam Medis Pasien,” J. Sci. Soc. Res., vol. 4307, no. 3, hal. 3457–3465, 2025, [Daring]. Tersedia pada: http://jurnal.goretanpena.com/index.php/JSSR
[5] Nanda, dkk., “Analisis Data Mining Untuk Klasterisasi Data Rekam Medis Menggunakan Algoritma K-Means Pada Rumah Sakit Sylvani Binjai,” Indones. J. Educ. Comput. Sci., vol. 1, no. 3, hal. 82–88, 2023.
[6] M. Faisal, N. Nurdin, F. Fajriana, dan Z. Fitri, “Information and Communication Technology Competencies Clustering For Students For Vocational High School Students Using K-Means Clustering Algorithm,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 3, hal. 111–120, 2022, doi: 10.52088/ijesty.v2i3.318.
[7] J. Wandana, S. Defit, dan S. Sumijan, “Klasterisasi Data Rekam Medis Pasien Pengguna Layanan BPJS Kesehatan Menggunakan Metode K-Means,” J. Inf. dan Teknol., vol. 2, hal. 4–9, 2020, doi: 10.37034/jidt.v2i4.73.
[8] D. Dahnial, “Implementation of K-Means Clustering Method to Lecturers Based on Publications of National Journals and Accredited Sinta,” JEECS (Journal Electr. Eng. Comput. Sci., vol. 8, no. 1, hal. 27–40, 2023, doi: 10.54732/jeecs.v8i1.4.
[9] D. Prasetyawan, A. Mulyanto, dan R. Gatra, “Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder,” Edumatic J. Pendidik. Inform., vol. 9, no. 1, hal. 198–207, 2025, doi: 10.29408/edumatic.v9i1.29713.
[10] Y. Saputra Sy, “Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means,” J. Sistim Inf. dan Teknol., vol. 5, hal. 33–37, 2022, doi: 10.37034/jsisfotek.v5i2.162.
[11] N. Nurdin, S. Fitriani, Z. Yunizar, dan B. Bustami, “Clustering the Distribution of COVID-19 in Aceh Province Using the Fuzzy C-Means Algorithm,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 6, no. 3, hal. 665, 2022, doi: 10.31764/jtam.v6i3.8576.
[12] N. Nurdin, M. Suhendri, Y. Afrilia, dan R. Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC),” Sistemasi, vol. 10, no. 2, hal. 268, 2021, doi: 10.32520/stmsi.v10i2.1193.
[13] N. S.Kom., M.Kom (SCOPUS ID=ID: 57201646662), U. M. Putri Nasution, H. A.-K. Aidilof, dan B. Bustami, “Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels in Online Learning,” Sistemasi, vol. 11, no. 1, hal. 121, 2022, doi: 10.32520/stmsi.v11i1.1638.
[14] N. N. Dzikrulloh dan B. D. Setiawan, “Penerapan Metode K – Nearest Neighbor ( KNN ) dan Metode Weighted Product ( WP ) Dalam Penerimaan Calon Guru Dan Karyawan Tata Usaha Baru Berwawasan Teknologi ( Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri ),” vol. 1, no. 5, hal. 378–385, 2017.
[15] F. P. Ferdy Pangestu, N. Y. Nur Yasin, R. C. Ronald Chistover Hasugian, dan Y. Yunita, “Penerapan Algoritma K-Means Untuk Mengklasifikasi Data Obat,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 1, hal. 53–62, 2023, doi: 10.32736/sisfokom.v12i1.1461.
[16] M. S. Sasmita, “Implementasi Algoritma K-Means Untuk Clustering Data Penyakit Di Puskesmas Kotagede 2 Yogyakarta,” SUBMIT J. Ilm. Teknol. Infomasi dan Sains, vol. 4, no. 1, hal. 1–9, 2024, doi: 10.36815/submit.v4i1.3195.
[17] Nurdiana dan Yusrizal, “Analisis Persepsi Pelayanan BPJS KetenagakerjaanDi Tanjung Morawa,” J. Soc. Sci. Res., vol. 3, no. 2, hal. 10344–10352, 2023.
[18] H. Thabrany, “Bpjsnsionalataubpjsd Badan Penyelenggara Jaminan Kesehatan Nasional : Sebuah Policy Paper dalam Analisis Kesesuaian,” hal. 15, 2015.
[19] A. Ali, “Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 1, hal. 186–195, 2019, doi: 10.30812/matrik.v19i1.529.
[20] R. Ordila, R. Wahyuni, Y. Irawan, dan M. Yulia Sari, “Penerapan Data Mining Untuk Pengelompokan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritma Clustering (Studi Kasus : Poli Klinik PT.Inecda),” J. Ilmu Komput., vol. 9, no. 2, hal. 148–153, 2020, doi: 10.33060/jik/2020/vol9.iss2.181.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anggri Sapitri, Nurdin Nurdin, Yesy Afrilia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








