Implementation of Clustering Method Using K-Means Algorithm for Grouping BPJS Health Patient Medical Record Data

Authors

  • Anggri Sapitri Universitas Malikussaleh
  • Nurdin Nurdin Universitas Malikussaleh
  • Yesy Afrilia Universitas Malikussaleh

DOI:

https://doi.org/10.30871/jaic.v9i5.10046

Keywords:

K-Means Clustering, Z-score, Medical Records, BPJS Health, RSUD Simeulue

Abstract

Clustering medical record data of BPJS Health patients is essential in supporting data-driven decision-making in hospitals. This study aims to implement the K-Means algorithm to cluster patient medical records at RSUD Simeulue based on BPJS class and patient address variables. The data were first normalized using the Z-Score method to standardize variable scales, followed by the iterative application of the K-Means algorithm until convergence was reached at the sixth iteration. The study employed three Cluster, namely Cluster 1 (Very Many), Cluster 2 (Many), and Cluster 3 (Not Many). The final results show that Cluster 1 contains 258 patients from Class 1 and 292 from Class 2; Cluster 2 consists of 296 patients from Class 2; and Cluster 3 includes 101 patients from Class 1, 115 from Class 2, and 148 from Class 3. In addition to classification by BPJS class, clustering based on patient address revealed a dominant distribution from Simeulue Timur, Teluk Dalam, and Teupah Selatan sub-districts. The clustering results were implemented into a web-based information system using the Laravel framework and MySQL database, enabling hospital administrators to visualize and analyze patient data effectively. This study demonstrates that the K-Means algorithm can be effectively applied in classifying medical record data to support healthcare management decision-making.

Downloads

Download data is not yet available.

References

[1] W. Purba et al., “Penerapan Data Mining Untuk Pengelolaan Data Rekam Medis Menggunakan Metode K-means Clustering Pada Rumah Sakit Royal Prima Medan,” J. TEKINKOM, vol. 6, no. 1, hal. 158–168, 2023, doi: 10.37600/tekinkom.v6i1.857.

[2] N. Cahyana dan A. Aribowo, “Metode Data Mining K-Means Untuk Klasterisasi Data Penanganan Dan Pelayanan Kesehatan Masyarakat,” Semin. Nas. Inform. Medis, no. 5, hal. 24–31, 2018.

[3] D. Andreswari, R. Efendi, dan K. Prastio, “Clustering Data Rekam Medis untuk Penentuan Penyakit Endemi di Daerah Kabupaten Bengkulu Selatan dengan Mengimplementasikan Metode FUZZY C-MEANS,” J. Rekursif, vol. 11, no. 1, hal. 42–52, 2023, [Daring]. Tersedia pada: http://ejournal.unib.ac.id/index.php/rekursif/42

[4] W. Aulia, A. Putera Utama Siahaan, L. Marlina, dan M. Iqbal, “Analisis Algoritma K-Means Clustering Dalam Identifikasi Tingkat Risiko Penyakit Berdasarkan Data Rekam Medis Pasien,” J. Sci. Soc. Res., vol. 4307, no. 3, hal. 3457–3465, 2025, [Daring]. Tersedia pada: http://jurnal.goretanpena.com/index.php/JSSR

[5] Nanda, dkk., “Analisis Data Mining Untuk Klasterisasi Data Rekam Medis Menggunakan Algoritma K-Means Pada Rumah Sakit Sylvani Binjai,” Indones. J. Educ. Comput. Sci., vol. 1, no. 3, hal. 82–88, 2023.

[6] M. Faisal, N. Nurdin, F. Fajriana, dan Z. Fitri, “Information and Communication Technology Competencies Clustering For Students For Vocational High School Students Using K-Means Clustering Algorithm,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 3, hal. 111–120, 2022, doi: 10.52088/ijesty.v2i3.318.

[7] J. Wandana, S. Defit, dan S. Sumijan, “Klasterisasi Data Rekam Medis Pasien Pengguna Layanan BPJS Kesehatan Menggunakan Metode K-Means,” J. Inf. dan Teknol., vol. 2, hal. 4–9, 2020, doi: 10.37034/jidt.v2i4.73.

[8] D. Dahnial, “Implementation of K-Means Clustering Method to Lecturers Based on Publications of National Journals and Accredited Sinta,” JEECS (Journal Electr. Eng. Comput. Sci., vol. 8, no. 1, hal. 27–40, 2023, doi: 10.54732/jeecs.v8i1.4.

[9] D. Prasetyawan, A. Mulyanto, dan R. Gatra, “Pemetaan Lintasan Karir Alumni Berdasarkan Analisis Cluster: Kombinasi K-Means dan Reduksi Dimensi Autoencoder,” Edumatic J. Pendidik. Inform., vol. 9, no. 1, hal. 198–207, 2025, doi: 10.29408/edumatic.v9i1.29713.

[10] Y. Saputra Sy, “Klasterisasi Pasien Rawat Inap Peserta BPJS Berdasarkan Jenis Penyakit Menggunakan Algoritma K-Means,” J. Sistim Inf. dan Teknol., vol. 5, hal. 33–37, 2022, doi: 10.37034/jsisfotek.v5i2.162.

[11] N. Nurdin, S. Fitriani, Z. Yunizar, dan B. Bustami, “Clustering the Distribution of COVID-19 in Aceh Province Using the Fuzzy C-Means Algorithm,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 6, no. 3, hal. 665, 2022, doi: 10.31764/jtam.v6i3.8576.

[12] N. Nurdin, M. Suhendri, Y. Afrilia, dan R. Rizal, “Klasifikasi Karya Ilmiah (Tugas Akhir) Mahasiswa Menggunakan Metode Naive Bayes Classifier (NBC),” Sistemasi, vol. 10, no. 2, hal. 268, 2021, doi: 10.32520/stmsi.v10i2.1193.

[13] N. S.Kom., M.Kom (SCOPUS ID=ID: 57201646662), U. M. Putri Nasution, H. A.-K. Aidilof, dan B. Bustami, “Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels in Online Learning,” Sistemasi, vol. 11, no. 1, hal. 121, 2022, doi: 10.32520/stmsi.v11i1.1638.

[14] N. N. Dzikrulloh dan B. D. Setiawan, “Penerapan Metode K – Nearest Neighbor ( KNN ) dan Metode Weighted Product ( WP ) Dalam Penerimaan Calon Guru Dan Karyawan Tata Usaha Baru Berwawasan Teknologi ( Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri ),” vol. 1, no. 5, hal. 378–385, 2017.

[15] F. P. Ferdy Pangestu, N. Y. Nur Yasin, R. C. Ronald Chistover Hasugian, dan Y. Yunita, “Penerapan Algoritma K-Means Untuk Mengklasifikasi Data Obat,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 1, hal. 53–62, 2023, doi: 10.32736/sisfokom.v12i1.1461.

[16] M. S. Sasmita, “Implementasi Algoritma K-Means Untuk Clustering Data Penyakit Di Puskesmas Kotagede 2 Yogyakarta,” SUBMIT J. Ilm. Teknol. Infomasi dan Sains, vol. 4, no. 1, hal. 1–9, 2024, doi: 10.36815/submit.v4i1.3195.

[17] Nurdiana dan Yusrizal, “Analisis Persepsi Pelayanan BPJS KetenagakerjaanDi Tanjung Morawa,” J. Soc. Sci. Res., vol. 3, no. 2, hal. 10344–10352, 2023.

[18] H. Thabrany, “Bpjsnsionalataubpjsd Badan Penyelenggara Jaminan Kesehatan Nasional : Sebuah Policy Paper dalam Analisis Kesesuaian,” hal. 15, 2015.

[19] A. Ali, “Klasterisasi Data Rekam Medis Pasien Menggunakan Metode K-Means Clustering di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 1, hal. 186–195, 2019, doi: 10.30812/matrik.v19i1.529.

[20] R. Ordila, R. Wahyuni, Y. Irawan, dan M. Yulia Sari, “Penerapan Data Mining Untuk Pengelompokan Data Rekam Medis Pasien Berdasarkan Jenis Penyakit Dengan Algoritma Clustering (Studi Kasus : Poli Klinik PT.Inecda),” J. Ilmu Komput., vol. 9, no. 2, hal. 148–153, 2020, doi: 10.33060/jik/2020/vol9.iss2.181.

Downloads

Published

2025-10-08

How to Cite

[1]
A. Sapitri, N. Nurdin, and Y. Afrilia, “Implementation of Clustering Method Using K-Means Algorithm for Grouping BPJS Health Patient Medical Record Data”, JAIC, vol. 9, no. 5, pp. 2391–2398, Oct. 2025.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.