Implementation of K-Means, Hierarchical, and BIRCH Clustering Algorithms to Determine Marketing Targets for Vape Sales in Indonesia

  • Justin Laurenso Universitas Pradita
  • Danny Jiustian Universitas Pradita
  • Felix Fernando Universitas Pradita
  • Vartin Suhandi Universitas Pradita
  • Theresia Herlina Rochadiani Universitas Pradita
Keywords: Algoritma K-Means, BIRCH, Clustering, Elbow Method, Silhouette Score

Abstract

In today's era, smoking is a common thing in everyday life. Along with the development of the times, an innovation emerged, namely the electric cigarette or vape. Electric cigarettes or vapes use electricity to produce vapor. The e-cigarette business is very promising in today's business world due to the consistent increase in market demand. However, determining the target buyer is one of the things that is quite important in determining the success of a business. In this analysis, the background of each region in Indonesia has different diversity; therefore, observation of data is needed to find out which regions in Indonesia have the potential to increase marketing based on profits (margins) to support the target market analysis process so that companies do not suffer losses and increase business success. In this study, the analysis will be carried out using vape quantity, margin, and purchasing power data in each region, which is processed using 3 algorithms: K-Means, Hierarchical, and BIRCH. The results of the clustering of the three algorithms produce two clusters. The K-means, Hierarchical, and BIRCH algorithms produce the same clusters: a potential cluster consisting of 18 cities and a non-potential cluster consisting of 45 cities. To see the performance of the model results, an evaluation was carried out using the Silhouette score, Davies Bouldin, Calinski Harabasz, and Dunn index, which obtained results of 0.765201, 0.376322, 315.949434, and 0.013554. From these results, it can be concluded that the clustering results are not too good and not too bad because the greater the Silhouette Score, Calinski Harabasz, and Dunn Index value, the better the clustering results while for Davies Bouldin the smaller the value means the better the clustering results.

Downloads

Download data is not yet available.

References

A. R. Ramadhani, H. Bunyamin, and L. Fitriani, “Perancangan Aplikasi Persediaan Barang dan Transaksi Penjualan Barang di Alya Store,” Jurnal Algoritma, vol. 13, no. 2, pp. 284–390, Feb. 2017, doi: 10.33364/algoritma/v.13-2.384.

W. P. WIDHARTA, “Penyusunan Strategi Dan Sistem Penjualan Dalam Rangka Meningkatkan Penjualan Toko Damai,” Jurnal Strategi Pemasaran, vol. 1, no. 2, pp. 1–15, 2013, [Online]. Available: https://publication.petra.ac.id/index.php/manajemen-pemasaran/article/view/720

M. A. Budhi, “Pemilihan Lokasi Usaha Vaporstore Menggunakan Metode Weighted Product,” Jurnal Sistem dan Informatika (JSI), vol. 14, no. 1, pp. 9–15, Nov. 2019, doi: 10.30864/jsi.v14i1.230.

I. P. Sari, “Implementasi Data Science dalam Ritel Online: Analisis Customer Retention dan Clustering Customer dengan Metode K-Means,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, 2021, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/333

M. C. Untoro, L. Anggraini, M. Andini, H. Retnosari, and M. A. Nasrulloh, “Penerapan metode k-means clustering data COVID-19 di Provinsi Jakarta,” Teknologi, vol. 11, no. 2, pp. 59–68, Apr. 2021, doi: 10.26594/teknologi.v11i2.2323.

R. Fadly and I. Wahyudin, “Customer Segmentation Using K-Means Algorithm As A Basis For A Marketing Strategy In The Store Rumah Tua VAPE,” 2020. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik

Z. G. Prastyawan, M. Ridho Bagaskara, and D. Fitriati, “SEGMENTASI PELANGGAN RESTORAN MENGGUNAKAN METODE CLUSTERING SIMPLE K-MEANS (STUDI KASUS XYZ),” 2018. [Online]. Available: https://conference.upnvj.ac.id/index.php/seinasikesi/article/view/75/pdf

H. and H. R. and J. M. and J. J. Kurniadewi, “Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga Kerja Menggunakan Algoritma K-Means,” Journal of Applied Informatics and Computing, vol. 6, pp. 113–119, Aug. 2022, [Online]. Available: https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4227

M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” Journal of Applied Informatics and Computing, vol. 5, no. 2, pp. 103–108, Oct. 2021, doi: 10.30871/jaic.v5i2.3200.

M. N. Sutoyo, “Algoritma K-Means.” [Online]. Available: https://fti.usn.ac.id/sinau/assets/files/KMeans.pdf

Tri Binty N, “Algorithm Agglomerative Hierarchical Clustering — and Practice with R,” Jun. 30, 2019. https://medium.com/@story.of.stats/algorithm-agglomerative-hierarchical-clustering-31d2cea14d9

M. Aldo Shauma, Y. Purwanto, A. iovianty, and S. Komputer, “Deteksi Anomali Trafik Menggunakan Algoritma BIRCH dan DBSCAN menggunakan Streaming Traffic Anomaly Traffic Detection with BIRCH dan DBSCAN Algorithm for Streaming Traffic,” e-Proceeding of Engineering, vol. 3, p. 5004, 2016, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/3132#

Munar Hudaya, “14.pertemuan Keempatbelas.” UNIKOM, Bandung, May 10, 2013. [Online]. Available: https://repository.unikom.ac.id/42096/1/14.Pertemuan%20Keempatbelas.doc

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix : Jurnal Manajemen Teknologi dan Informatika, vol. 9, no. 3, pp. 102–109, Nov. 2019, doi: 10.31940/matrix.v9i3.1662.

N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” Jurnal Manajemen Informatika (JAMIKA), vol. 10, no. 2, pp. 133–146, Oct. 2020, doi: 10.34010/jamika.v10i2.2683.

C.-E. ben Ncir, A. Hamza, and W. Bouaguel, “Parallel and scalable Dunn Index for the validation of big data clusters,” Parallel Comput, vol. 102, p. 102751, May 2021, doi: 10.1016/j.parco.2021.102751.

SRI ARISTA PANGGOLA, “Penentuan K Opitmum dengan nilai Dunn Index dan Davies Bouldin Index, Serta Evaluasi Model Cluster Menggunakan Average Within dan Average Between di R,” Jul. 18, 2020. https://medium.com/@aristap/penentuan-k-opitmum-dengan-nilai-dunn-index-dan-davies-bouldin-index-serta-evaluasi-model-cluster-d1cde2f9e828

Published
2024-07-07
How to Cite
[1]
J. Laurenso, D. Jiustian, F. Fernando, V. Suhandi, and T. H. Rochadiani, “Implementation of K-Means, Hierarchical, and BIRCH Clustering Algorithms to Determine Marketing Targets for Vape Sales in Indonesia”, JAIC, vol. 8, no. 1, pp. 62-70, Jul. 2024.
Section
Articles