Implementation of K-Means, Hierarchical, and BIRCH Clustering Algorithms to Determine Marketing Targets for Vape Sales in Indonesia
Abstract
In today's era, smoking is a common thing in everyday life. Along with the development of the times, an innovation emerged, namely the electric cigarette or vape. Electric cigarettes or vapes use electricity to produce vapor. The e-cigarette business is very promising in today's business world due to the consistent increase in market demand. However, determining the target buyer is one of the things that is quite important in determining the success of a business. In this analysis, the background of each region in Indonesia has different diversity; therefore, observation of data is needed to find out which regions in Indonesia have the potential to increase marketing based on profits (margins) to support the target market analysis process so that companies do not suffer losses and increase business success. In this study, the analysis will be carried out using vape quantity, margin, and purchasing power data in each region, which is processed using 3 algorithms: K-Means, Hierarchical, and BIRCH. The results of the clustering of the three algorithms produce two clusters. The K-means, Hierarchical, and BIRCH algorithms produce the same clusters: a potential cluster consisting of 18 cities and a non-potential cluster consisting of 45 cities. To see the performance of the model results, an evaluation was carried out using the Silhouette score, Davies Bouldin, Calinski Harabasz, and Dunn index, which obtained results of 0.765201, 0.376322, 315.949434, and 0.013554. From these results, it can be concluded that the clustering results are not too good and not too bad because the greater the Silhouette Score, Calinski Harabasz, and Dunn Index value, the better the clustering results while for Davies Bouldin the smaller the value means the better the clustering results.
Downloads
References
A. R. Ramadhani, H. Bunyamin, and L. Fitriani, “Perancangan Aplikasi Persediaan Barang dan Transaksi Penjualan Barang di Alya Store,” Jurnal Algoritma, vol. 13, no. 2, pp. 284–390, Feb. 2017, doi: 10.33364/algoritma/v.13-2.384.
W. P. WIDHARTA, “Penyusunan Strategi Dan Sistem Penjualan Dalam Rangka Meningkatkan Penjualan Toko Damai,” Jurnal Strategi Pemasaran, vol. 1, no. 2, pp. 1–15, 2013, [Online]. Available: https://publication.petra.ac.id/index.php/manajemen-pemasaran/article/view/720
M. A. Budhi, “Pemilihan Lokasi Usaha Vaporstore Menggunakan Metode Weighted Product,” Jurnal Sistem dan Informatika (JSI), vol. 14, no. 1, pp. 9–15, Nov. 2019, doi: 10.30864/jsi.v14i1.230.
I. P. Sari, “Implementasi Data Science dalam Ritel Online: Analisis Customer Retention dan Clustering Customer dengan Metode K-Means,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, 2021, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jsakti/article/view/333
M. C. Untoro, L. Anggraini, M. Andini, H. Retnosari, and M. A. Nasrulloh, “Penerapan metode k-means clustering data COVID-19 di Provinsi Jakarta,” Teknologi, vol. 11, no. 2, pp. 59–68, Apr. 2021, doi: 10.26594/teknologi.v11i2.2323.
R. Fadly and I. Wahyudin, “Customer Segmentation Using K-Means Algorithm As A Basis For A Marketing Strategy In The Store Rumah Tua VAPE,” 2020. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik
Z. G. Prastyawan, M. Ridho Bagaskara, and D. Fitriati, “SEGMENTASI PELANGGAN RESTORAN MENGGUNAKAN METODE CLUSTERING SIMPLE K-MEANS (STUDI KASUS XYZ),” 2018. [Online]. Available: https://conference.upnvj.ac.id/index.php/seinasikesi/article/view/75/pdf
H. and H. R. and J. M. and J. J. Kurniadewi, “Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga Kerja Menggunakan Algoritma K-Means,” Journal of Applied Informatics and Computing, vol. 6, pp. 113–119, Aug. 2022, [Online]. Available: https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4227
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” Journal of Applied Informatics and Computing, vol. 5, no. 2, pp. 103–108, Oct. 2021, doi: 10.30871/jaic.v5i2.3200.
M. N. Sutoyo, “Algoritma K-Means.” [Online]. Available: https://fti.usn.ac.id/sinau/assets/files/KMeans.pdf
Tri Binty N, “Algorithm Agglomerative Hierarchical Clustering — and Practice with R,” Jun. 30, 2019. https://medium.com/@story.of.stats/algorithm-agglomerative-hierarchical-clustering-31d2cea14d9
M. Aldo Shauma, Y. Purwanto, A. iovianty, and S. Komputer, “Deteksi Anomali Trafik Menggunakan Algoritma BIRCH dan DBSCAN menggunakan Streaming Traffic Anomaly Traffic Detection with BIRCH dan DBSCAN Algorithm for Streaming Traffic,” e-Proceeding of Engineering, vol. 3, p. 5004, 2016, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/3132#
Munar Hudaya, “14.pertemuan Keempatbelas.” UNIKOM, Bandung, May 10, 2013. [Online]. Available: https://repository.unikom.ac.id/42096/1/14.Pertemuan%20Keempatbelas.doc
D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix : Jurnal Manajemen Teknologi dan Informatika, vol. 9, no. 3, pp. 102–109, Nov. 2019, doi: 10.31940/matrix.v9i3.1662.
N. H. Harani, C. Prianto, and F. A. Nugraha, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” Jurnal Manajemen Informatika (JAMIKA), vol. 10, no. 2, pp. 133–146, Oct. 2020, doi: 10.34010/jamika.v10i2.2683.
C.-E. ben Ncir, A. Hamza, and W. Bouaguel, “Parallel and scalable Dunn Index for the validation of big data clusters,” Parallel Comput, vol. 102, p. 102751, May 2021, doi: 10.1016/j.parco.2021.102751.
SRI ARISTA PANGGOLA, “Penentuan K Opitmum dengan nilai Dunn Index dan Davies Bouldin Index, Serta Evaluasi Model Cluster Menggunakan Average Within dan Average Between di R,” Jul. 18, 2020. https://medium.com/@aristap/penentuan-k-opitmum-dengan-nilai-dunn-index-dan-davies-bouldin-index-serta-evaluasi-model-cluster-d1cde2f9e828
Copyright (c) 2024 Justin Laurenso, Danny Jiustian, Felix Fernando, Vartin Suhandi, Theresia Herlina Rochadiani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).