Clustering and Forecasting Implementation for Medical Consumables Stock Reccomendation
DOI:
https://doi.org/10.30871/jaic.v9i4.9717Keywords:
Agglomerative Hierarchical Clustering, Medical Consumables, Recommendations, Single Exponential SmoothingAbstract
Managing medical consumables (BMHP) in hospitals can be tricky because the demand often changes unpredictably. This study aims to help hospitals manage their BMHP stocks better by using two techniques: forecasting with Single Exponential Smoothing (SES) and grouping items using Agglomerative Hierarchical Clustering (AHC). SES is used to predict future needs based on previous usage, while AHC groups similar items based on how they're used, which helps make the predictions more accurate. Before applying clustering, the prediction error was quite high, with a MAPE of 61.77% and an MAE of 18,769.80. After clustering, these numbers dropped to 10.06% and 3,987.45, showing a significant improvement. The clustering itself was strong, with a Silhouette Coefficient of 0.727, meaning the item groups made sense. Each group of items got different stock suggestions. Items with high and unstable demand were advised to keep extra safety stock. Items with uncertain patterns needed a more flexible buffer stock. For items with stable use, average trends over the last few months were enough to guide stock planning. This approach helps hospitals avoid both overstock and stockouts by giving more accurate and tailored recommendations. Although this study only used data from one hospital, the results show that combining SES and AHC can make stock management smarter and more efficient.
Downloads
References
[1] T. I. Pratiwi, B. C. Octariadi, S.Kom.,M.Cs, and Y. Brianorman,S.Si.,M.T, “Sistem Informasi Peramalan Persediaan Roti Menggunakan Metode Single Exponential Smoothing Pada Pabrik Teguh Karya Bakery,” Digital Intelligence, vol. 2, no. 2, p. 72, Apr. 2022, doi: 10.29406/diligent.v2i2.3286.
[2] K. Atma Wijaya and D. Swanjaya, “Integrasi Metode Agglomerative Hierarchical Clustering dan Backpropagation Pada Model Peramalan Penjualan,” 2021.
[3] A. Ikbal, A. I. Purnamasari, and I. Ali, “Analisis Klasterisasi Untuk Prediksi Jumlah Kasus Dbd Berdasarkan Jenis Kelamin Dan Kabupaten/Kota Di Jawa Barat,” 2023.
[4] D. Astuti, D. Y. Hartanti, S. T. Nurhayanti, and H. Fransiska, “Clustering and Forecasting of Covid-19 Data in Indonesia,” Jurnal Matematika, Statistika dan Komputasi, vol. 18, no. 3, pp. 324–335, May 2022, doi: 10.20956/j.v18i3.18882.
[5] M. A. Sundari, R. Pane, and R. Rohani, “Data Mining Clustering Korban Kejahatan Pelecehan Seksual dengan Kekerasan Berdasarkan Provinsi Menggunakan Metode AHC,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, Jun. 2023, doi: 10.47065/bits.v5i1.3499.
[6] S. N. Budiman, A. History, and N. Budiman, “Jurnal Teknologi dan Manajemen Informatika Peramalan Stock Barang Dagangan Menggunakan Metode Single Exponential Smoothing Article Info ABSTRACT,” Jurnal Teknologi dan Manajemen Informatika, vol. 7, no. 2, pp. 113–121, 2021, [Online]. Available: http://http://jurnal.unmer.ac.id/index.php/jtmi
[7] S. Mulyani, D. Hayati, A. N. Sari, and S. Nasional Banjarmasin, “Analisis Metode Peramalan (Forecasting) Penjualan Sepeda Motor Honda Dalam Menyusun Anggaran Penjualan Pada Pt Trio Motor Martadinata Banjarmasin,” 2021.
[8] A. Nurlifa and S. Kusumadewi, “Sistem Peramalan Jumlah Penjualan Menggunakan Metode Moving Average Pada Rumah Jilbab Zaky,” vol. 2, no. 1, p. 2017.
[9] H. Yulius and I. Yetti, “Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(5-14) 5 Diterbitkan Oleh Program Studi Pendidikan Informatika STKIP PGRI Sumbar Peramalan Kebutuhan Manajemen Logistik Pada Usaha Depot Air Minum Isi Ulang Al-Fitrah”, doi: 10.22202/jei.2014.v1i1.1430.
[10] D. A. Sri Nawangwulan, “Analisis Time Series Metode Winter Jumlah Penderita Gastroenteritis Rawat Inap Berdasarkan Data Rekam Medis Di Rsud Dr. Soetomo Surabaya,” Jurnal Manajemen Kesehatan STIKES Yayasan RS. Dr. Soetomo, vol. 2, no. 1, pp. 17–32, 2019.
[11] M. Rizal Kurniawan, J. Dedy Irawan, and F. Santi Wahyuni, “Forecasting Penjualan Kopi Dengan Metode Exponential Smoothing Berbasis Web (Studi Kasus Kedai Psycoffee),” 2021.
[12] I. Larasati et al., “Forecasting Produksi Perikanan Laut Yang Dijual Di Tpi (Ton) Dengan Metode Single Exponential Smoothing,” 2020.
[13] S. Sarbaini and E. Safitri, “Penerapan Metode Single Exponential Smoothing dalam Memprediksi Jumlah Peserta Pelatihan Masyarakat,” Lattice Journal : Journal of Mathematics Education and Applied, vol. 2, no. 2, p. 103, Dec. 2022, doi: 10.30983/lattice.v2i2.5937.
[14] H. Dimas Prasetya, M. A. Ineke Pakereng, and K. Satya Wacana, “Prediksi Jumlah Produksi Terhadap Kebutuhan Pasar di PT. Morich Indo Fashion Menggunakan Metode Single Exponential Smoothing,” Jurnal Teknologi Informasi dan Komunikasi), vol. 7, no. 1, p. 2023, 2023, doi: 10.35870/jti.
[15] H. Prayoga et al., “Penerapan Metode AHC Ward dalam Mengelompokkan Data UKM di Kecamatan Umbulharjo,” vol. 10, no. 1, pp. 1–8, 2022, doi: 10.12928/jstie.v8i3.xxx.
[16] S. Setiyawati, N. Umilia Purwanti, and J. Hadari Nawawi, “Analysis Of Psychotropic Inventory Control Using Abc, Eoq, And Buffer Stock Methods In Mental Hospital Sungai Bangkong Pontianak,” 2022.
[17] W. W. Rohimah and Y. Siyamto, “Optimalisasi Pengelolaan Perbekalan Farmasi dalam Menunjang Ketersediaan Obat di Rumah Sakit,” Jurnal Ilmiah Keuangan Akuntansi Bisnis, vol. 3, no. 3, pp. 590–596, Oct. 2024, doi: 10.53088/jikab.v3i3.167.
[18] A. Ferry Qadafi and A. D. Wahyudi, “Sistem Informasi Inventory Gudang Dalam Ketersediaan Stok Barang Menggunakan Metode Buffer Stok,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 1, no. 2, pp. 174–182, 2020, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fahri Setia Darma, Tedy Setiadi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








