Regional Clustering in Sumatera Based on Walfare Indicators Using Fuzzy C-Means
DOI:
https://doi.org/10.30871/jaic.v9i5.10103Keywords:
Welfare, Sumatera Island, Clustering, Fuzzy C-Means, Partition Coefficient IndexAbstract
Welfare refers to a condition in which individuals have sufficient means to meet both physical and spiritual needs. In Indonesia, welfare is a national goal, yet Sumatra experiences the highest development disparity, contributing to unequal welfare distribution across regions. This study aims to cluster regions in Sumatra based on welfare indicators using the Fuzzy C-Means (FCM) method, analyze cluster characteristics, and provide policy recommendations for decision-makers. FCM is used because it accommodates uncertainty and allows each data point to belong to more than one cluster, making it suitable for welfare analysis. Cluster validity was tested using Partition Coefficient Index (PCI) and Silhouette Coefficient, both indicating that the optimal number of clusters is two. The results show that Cluster 1 consists of 62 regions with relatively higher welfare conditions, while Cluster 2 includes 92 regions with lower welfare characteristics. One notable member of Cluster 2 is Ogan Komering Ulu, with a high membership degree of 0.869. Recommended policies include improving access to clean water and healthcare, enhancing education, strengthening local economies, and delivering targeted social assistance to underdeveloped areas. For Cluster 1, sustainable development efforts should be maintained.
Downloads
References
[1] Irwan, W. Sanusi, and K. Nurani, “Penggunaan Analisis Biplot dalam Pengelompokan Kabupaten/Kota diProvinsi Sulawesi Selatan Berdasarkan Indikator KesejahteraanMasyarakat,” J. Math. Comput. Stat., vol. 6, no. 2, pp. 177–187, 2023.
[2] M. Ridho, Z. Zulgani, and E. Achmad, “Analisis ketimpangan pembangunan wilayah antar provinsi di Pulau Sumatera,” e-Jurnal Perspekt. Ekon. dan Pembang. Drh., vol. 11, no. 1, pp. 47–58, 2022, doi: 10.22437/pdpd.v11i1.14005.
[3] A. Febriyanda, “Analisis Ketimpangan Pembangunan Ekonomi di Pulau Sumatera,” Universitas Islam Negeri Ar-Raniry, 2022. [Online]. Available: https://repository.ar-raniry.ac.id/20754/1/Andri Febriyanda_180604012_FEBI_IE_082363618625.pdf
[4] R. Yulianti, “Efektivitas Program Keluarga Harapan (Pkh) Terhadap Kesejahteraan Masyarakat (Studi Kasus di Desa Bojongmalang Kecamatan Cimaragas Kabupaten Ciamis),” vol. 4, no. 2, pp. 114–121, 2020.
[5] Badan Pusat Statistik Indonesia, “Indikator Kesejahteraan Rakyat 2024,” 2024. [Online]. Available: https://www.bps.go.id/id/publication/2024/11/06/3ef10d3d82ed93f616ba9113/indikator-kesejahteraan-rakyat-2024.html
[6] H. Y. Wang, J. S. Wang, and G. Wang, “Multi-fuzzy clustering validity index ensemble: A Dempster-Shafer theory-based parallel and series fusion,” Egypt. Informatics J., vol. 24, no. 4, p. 100417, 2023, doi: 10.1016/j.eij.2023.100417.
[7] N. Zamri et al., “Development of Fuzzy C-Means with Fuzzy Chebyshev for genomic clustering solutions addressing cancer issues,” Procedia Comput. Sci., vol. 237, no. 2021, pp. 937–944, 2024, doi: 10.1016/j.procs.2024.05.182.
[8] D. Nurmin, M. N. Hayati, and R. Goejantoro, “Penerapan Metode Fuzzy C-Means Pada Pengelompokan Kabupaten / Kota di Pulau Kalimantan Berdasarkan Indikator Kesejahteraan Rakyat Tahun 2020 Application of the Fuzzy C-Means Method in the Grouping of Regencies / Cities in Kalimantan Island Based on People,” J. EKSPONENSIAL, vol. 13, pp. 189–196, doi: http://dx.doi.org/10.30872/eksponensial.v13i2.1068.
[9] R. Bahtiyar, S. Lestanti, and S. Nur Budiman, “Penerapan Metode Fuzzy C-Means Cluster Ing Untuk Pengelompokan Kabupaten Di Jawa Timur Berdasarkan Indikator Kesejahteraan Rakyat,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, pp. 3701–3710, 2024, doi: 10.36040/jati.v7i5.7812.
[10] H. Rusnedy, G. W. Nurcahyo, and Sumijan, “Identifikasi Tingkat Pemakaian Obat Menggunakan Metode Fuzzy C-Means,” J. Inf. dan Teknol., vol. 3, no. 4, pp. 196–204, 2021, doi: https://doi.org/10.37034/jidt.v3i4.152.
[11] W. Wijayanti, I. Rahmi Hg, and F. Yanuar, “Penggunaan Metode Fuzzy C-Means Untuk Pengelompokan Provinsi Di Indonesia Berdasarkan Indikator Kesehatan Lingkungan,” J. Mat. UNAND, vol. 10, no. 1, p. 129, 2021, doi: 10.25077/jmu.10.1.129-136.2021.
[12] Y. A. Susetyo, “Model Clustering Kesesuaian Lahan menggunakan Kombinasi Algoritma Fuzzy C-Means dan Partition Coefficient Index,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1395–1404, 2023, doi: https://doi.org/10.30865/mib.v7i3.6097.
[13] K. E. Setiawan, A. Kurniawan, A. Chowanda, and D. Suhartono, “Clustering models for hospitals in Jakarta using fuzzy c-means and k-means,” Procedia Comput. Sci., vol. 216, no. 2022, pp. 356–363, 2022, doi: 10.1016/j.procs.2022.12.146.
[14] I. Wahyuni, Logika Fuzzy Tahani. Komojoyo Press, 2021. [Online]. Available: http://digilib.uinkhas.ac.id/18226/1/Buku Logika Fuzzy Tahani turnitin.pdf
[15] M. P. Todaro and S. C. Smith, Economic Development, 9th ed. Pearson, 2006.
[16] B. Prayitno, A. S. Fenat, and P. Mahditia, Kesejahteraan Rakyat atas Papan: Akselerasi Pemenuhan Kebutuhan Papan. 2012.
[17] United Nations Development Programme, Human Development Report 2025. in Human Development Report. United Nations, 2025. doi: 10.18356/9789211542639.
[18] O. W. Health, “Health Systems: Improving Performance,” 2000. [Online]. Available: https://www.who.int/publications/i/item/924156198X
[19] D. Carr, Encyclopedia of the Life Course and Human Development, 3rd ed. Cengage Learning, 2009.
[20] U. J. Pape and R. Ali, “Pathways Towards Economic Security - Indonesia Poverty Assessment : Ringkasan Eksekutif (Bahasa (Indonesian)),” World Bank, 2023. [Online]. Available: http://documents.worldbank.org/curated/en/099050223030020132
[21] A. Sen, Development as freedom. Oxford University Press, 1999. [Online]. Available: https://dokumen.pub/welfare-and-wellbeing-richard-titmusss-contribution-to-social-policy-9781847425355.html
[22] P. Alcock, H. Glennerster, A. Oakley, and A. Sinfield, Welfare and Wellbeing: Richard Titmuss’s Contribution to social Policy. Policy Press, 2001.
[23] World Bank, “World Development Report 2015: Mind, Society, and Behavior,” The World Bank, Dec. 2015. doi: 10.1596/978-1-4648-0342-0.
[24] J. Han, P. Jian, and H. Tong, Data Mining: Concepts and Techniques, 4th ed. Cambridge: Morgan Kaufmann, 2022.
[25] F. Nelli, Python Data Analytics: Data Analysis and science Using Pandas, Matplotlib, and the Python programming language. New York: Apress, 2015.
[26] N. G. A. Dasriani, M. Mayadi, and A. Anggrawan, “Klasterisasi Lokasi Promosi PMB Dengan Fuzzy C-means Masa Pandemi Covid 19,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 327–336, 2022, doi: 10.30812/matrik.v21i2.1832.
[27] E. Z. Khulaidah and N. Irsalinda, “FCM using squared euclidean distance for e-commerce classification in Indonesia,” J. Phys. Conf. Ser., vol. 1613, no. 1, 2020, doi: 10.1088/1742-6596/1613/1/012071.
[28] N. Aini, A. Lestari, M. N. Hayati, F. Deny, and T. Amijaya, “Analisis cluster pada data kategorik dan numerik dengan pendekatan Cluster Ensemble (Studi kasus : puskesmas di Provinsi Kalimantan Timur kondisi Desember 2017),” J. EKSPONENSIAL Vol. 11, vol. 11, no. 2, pp. 117–126, 2020.
[29] G. Shmueli, P. C. Bruce, and N. R. Patel, Data Mining for Business Analytics: Concepts, techniques, and Applications with XLMiner, 3rd ed. Canada: New Jersey, 2016.
[30] R. Nur’aini, T. Widiharih, and B. A. Saputra, “Pengelompokan Kabupaten/K0ta di Provinsi Jawa Tengah Berdasarkan Indikator Kesehatan Bayi dan Balita Menggunakan Algoritma Fuzzy C-Means dan K-Medoids,” J. Gaussian, vol. 13, no. 1, pp. 189–198, 2024, doi: https://doi.org/10.14710/j.gauss.13.1.189-198.
[31] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The Fuzzy c-Means Clustering Algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–203, 1984, doi: 00983004849000207.
[32] H. S. Firdaus, A. L. Nugraha, B. Sasmito, and M. Awaluddin, “Perbandingan Metode Fuzzy C-Means Dan K-Means Untuk Pemetaan Daerah Rawan Kriminalitas Di Kota Semarang,” Elipsoida J. Geod. dan Geomatika, vol. 4, no. 01, pp. 58–64, 2021, doi: 10.14710/elipsoida.2021.9219.
[33] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. 1981. doi: 10.1007/978-1-4757-0450-1.
[34] F. W. Nugraha, S. Fauziati, and A. E. Permanasari, “Combination of Fuzzy C-Means and Simple Additive Weighting Using Partition Coefficient Index,” Proceeding - 2020 3rd Int. Conf. Vocat. Educ. Electr. Eng. Strength. Framew. Soc. 5.0 through Innov. Educ. Electr. Eng. Informatics Eng. ICVEE 2020, 2020, doi: 10.1109/ICVEE50212.2020.9243282.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rahma Dana Putri, Devni Prima Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








