Comparison of Hierarchical, K-Means and DBSCAN Clustering Methods for Credit Card Customer Segmentation Analysis Based on Expenditure Level
Abstract
The amount of data from credit card users is increasing from year to year. Credit cards are an important need for people to make payments. The increasing number of credit card users is because it is considered more effective and efficient. The third method used today has a function to determine the effective outcome of credit card user scenarios. In this study, a comparison was made using the Hierarchical Clustering, K-Means and DBSCAN methods to determine the results of credit card customer segmentation analysis to be used as a market strategy. The results obtained based on the best silhouette coefficient score method is two cluster hierarchical clustering with 0.82322 score. Based on the best mean value customers are divided into two segments, and it is suggested to develop strategies for both segments.
Downloads
References
D. S. Kristianti, “Kartu Kredit Syariah Dan Perilaku Konsumtif Masyarakat,” AHKAM J. Ilmu Syariah, vol. 14, no. 2, Jul 2014, doi: 10.15408/ajis.v14i2.1287.
S. Widi, “Jumlah Kartu Kredit Beredar Capai 16,58 Juta pada Juni 2022,” Dataindonesia.id, 30 Agustus 2022. https://dataindonesia.id/digital/detail/jumlah-kartu-kredit-beredar-capai-1658-juta-pada-juni-2022 (diakses 26 Desember 2022).
F. D. S. Alhamdani, A. A. Dianti, dan Y. Azhar, “Segmentasi Pelanggan Berdasarkan Perilaku Penggunaan Kartu Kredit Menggunakan Metode K-Means Clustering,” JISKA J. Inform. Sunan Kalijaga, vol. 6, no. 2, Art. no. 2, Mei 2021, doi: 10.14421/jiska.2021.6.2.70-77.
A. Bhasin, “Credit Card Dataset for Clustering,” 2017. https://www.kaggle.com/datasets/arjunbhasin2013/ccdata (diakses 5 Desember 2022).
B. Zaman dan E. Winarko, “Analisis Fitur Kalimat untuk Peringkas Teks Otomatis pada Bahasa Indonesia,” Indones. J. Comput. Cybern. Syst. 5, vol. 2, hlm. 60–68, 2011.
G. A. Sandag, J. Leopold, dan V. F. Ong, “Klasifikasi Malicious Websites Menggunakan Algoritma K-NN Berdasarkan Application Layers dan Network Characteristics,” CogITo Smart J., vol. 4, no. 1, Art. no. 1, Jun 2018, doi: 10.31154/cogito.v4i1.100.37-45.
R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” J. Teknol. Rekayasa, vol. 3, no. 1, hlm. 89, Jun 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.
H. Junaedi, H. Budianto, dan I. Maryati, “Data Transformation Pada Data Mining,” hlm. 7, 2011.
S. Beisken, T. Meinl, B. Wiswedel, L. F. de Figueiredo, M. Berthold, dan C. Steinbeck, “KNIME-CDK: Workflow-driven cheminformatics,” BMC Bioinformatics, vol. 14, no. 1, hlm. 257, Agu 2013, doi: 10.1186/1471-2105-14-257.
A. J. Jara, D. Genoud, dan Y. Bocchi, “Big data for smart cities with KNIME a real experience in the SmartSantander testbed,” Softw. Pract. Exp., vol. 45, no. 8, hlm. 1145–1160, 2015, doi: 10.1002/spe.2274.
L. Rahmawati, S. W. Sihwi, dan E. Suryani, “Analisa Clustering Menggunakan Metode K-Means Dan Hierarchical Clustering (Studi Kasus : Dokumen Skripsi Jurusan Kimia, FMIPA, Universitas Sebelas Maret),” ITSMART J. Teknol. Dan Inf., vol. 3, no. 2, Art. no. 2, Agu 2016, doi: 10.20961/itsmart.v3i2.654.
A. Muhidin, “Analisa Metode Hierarchical Clustering Dan K-Mean Dengan Model Lrfmp Pada Segmentasi Pelanggan,” J. SIGMA, vol. 8, no. 3, Art. no. 3, Sep 2017, doi: 10.37366/sigma.v8i3.134.
T. Alfina, B. Santosa, dan J. A. R. Hakim, “Analisa Perbandingan Metode Hierarchical Clustering, K-means dan Gabungan Keduanya dalam Cluster Data (Studi kasus : Problem Kerja Praktek Jurusan Teknik Industri ITS),” vol. 1, 2012.
N. K. Zuhal, “Study Comparison K-Means Clustering Dengan Algoritma Hierarchical Clustering: AHC, K-Means Clustering, Study Comparison,” STAINS Semin. Nas. Teknol. SAINS, vol. 1, no. 1, Art. no. 1, Feb 2022.
W. Widyawati, W. L. Y. Saptomo, dan Y. R. W. Utami, “Penerapan Agglomerative Hierarchical Clustering Untuk Segmentasi Pelanggan,” J. Ilm. SINUS, vol. 18, no. 1, hlm. 75, Jan 2020, doi: 10.30646/sinus.v18i1.448.
K. Latifah, “Kombinasi Algorithma K-NN dan Manhattan Distance untuk Menentukan Pemenang Lelang,” J. Inform. Upgris, vol. 1, no. 1 Juni, Art. no. 1 Juni, 2015, doi: 10.26877/jiu.v1i1.
W. M. P. Dhuhita, “Clustering Menggunakan Metode K-Means Untuk Menentukan Status Gizi Balita,” J. Inform., vol. 15, no. 2, 2015.
A. Bryant dan K. Cios, “RNN-DBSCAN: A Density-Based Clustering Algorithm Using Reverse Nearest Neighbor Density Estimates,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 6, hlm. 1109–1121, Jun 2018, doi: 10.1109/TKDE.2017.2787640.
J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, dan L. Shao, “Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm,” IEEE Trans. Image Process., vol. 25, no. 12, hlm. 5933–5942, Des 2016, doi: 10.1109/TIP.2016.2616302.
J. Hou, H. Gao, dan X. Li, “DSets-DBSCAN: A Parameter-Free Clustering Algorithm,” IEEE Trans. Image Process., vol. 25, no. 7, hlm. 3182–3193, Jul 2016, doi: 10.1109/TIP.2016.2559803.
M. I. P. Eriansya dan M. Syafrullah, “Implementasi Algoritma ST-DBSCAN dan K-MEANS Untuk Pengelompokan Indeks Pembangunan Manusia Kabupaten/Kota Pulau Jawa Tahun 2014-2016 Berbasis Web Di Badan Pusat Statistik,” SKANIKA, vol. 1, no. 3, Art. no. 3, Jul 2018.
R. Adha, N. Nurhaliza, U. Sholeha, dan M. Mustakim, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” SITEKIN J. Sains Teknol. Dan Ind., vol. 18, no. 2, Art. no. 2, Jun 2021, doi: 10.24014/sitekin.v18i2.12469.
N. Purwanto, Ilmu Pendidikan Teoritis dan Praktis. Bandung: Remaja Karya, 2002.
E. Rendón, I. Abundez, A. Arizmendi, dan E. M. Quiroz, “Internal versus External cluster validation indexes,” vol. 5, no. 1, 2011.
R. Hidayati, A. Zubair, A. H. Pratama, dan L. Indana, “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,” Techno.Com, vol. 20, no. 2, Art. no. 2, Mei 2021, doi: 10.33633/tc.v20i2.4556.
Copyright (c) 2023 Hafid Ramadhan, Mohammad Rizal Abdan Kamaludin, Muhammad Alfan Nasrullah, Dwi Rolliawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).