Application of Convolutional Neural Network (CNN) Algorithm with ResNet-101 Architecture for Monkey Pox Detection in Human

Authors

  • Al Fathir Rizal Januar Universitas Buana Perjuangan Karawang
  • Jamaludin Indra Teknik Informatika, Universitas Buana Perjuangan Karawang
  • Dwi Sulistya Kusumaningrum Teknik Informatika, Universitas Buana Perjuangan Karawang
  • Sutan Faisal Teknik Informatika, Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.30871/jaic.v9i3.9621

Keywords:

CNN, Detection, Monkey Pox, ResNet-101

Abstract

Monkeypox is a zoonotic disease that has spread to various countries, including Indonesia. It is transmitted through direct contact with skin lesions, respiratory droplets, or contaminated objects. Early and accurate detection is crucial to reduce the risk of transmission and improve treatment effectiveness. This study aims to detect monkeypox using a Convolutional Neural Network (CNN) with the ResNet-101 architecture. The pre-processing steps include normalization and resizing of images to 224×224 pixels. The model is trained using the Adam optimizer, categorical crossentropy loss function, and an adaptive learning rate reduction. Evaluation results show that the model achieved an accuracy of 94%, with a precision of 0.92, recall of 0.92, and an F1-score of 0.92. The model is capable of classifying images effectively, although some misclassifications still occur. This system is intended to function as an initial image-based screening tool, but its results should be confirmed through clinical diagnosis and laboratory testing to ensure accuracy.

Downloads

Download data is not yet available.

References

[1] L. Hilmi Marisah, I. Laily, and Salman, "Studi dan Tatalaksana Terkait Penyakit Cacar Monyet (Monkeypox) yang Menginfeksi Manusia," Jurnal Farmasetis, vol. 11, no. 3, 2022.

[2] C. S. Kuncoro, "Monkeypox: Manifestasi dan Diagnosis," 2023.

[3] GoodStats Indonesia, "Jumlah Kasus Cacar Monyet di Indonesia," GoodStats, 2024. [Online]. Available: https://goodstats.id/article/jumlah-kasus-cacar-monyet-di-indonesia-PHI8p. [Accessed: Apr. 28, 2025].

[4] L. Budiyarto, A. A. Sabila, and H. C. Putri, "Infeksi Cacar Monyet (Monkeypox)," Jurnal Medikah Utama, 2023. [Online]. Available: http://jurnalmedikahutama.com. [Accessed: Apr. 28, 2025].

[5] Tamba, "Jumlah Kasus Cacar Monyet," Circle Archive, 2024. [Online]. Available: https://circle-archive.com/index.php/carc/article/view/290. [Accessed: Apr. 28, 2025].

[6] A. Antoni, T. Rohana, and A. R. Pratama, "Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Citra Kemasan Kardus Defect dan No Defect," Building of Informatics, Technology and Science (BITS), vol. 4, no. 4, 2023. [Online]. Available: https://doi.org/10.47065/bits.v4i4.3270.

[7] A. R. Juwita, T. Al Mudzakir, A. R. Pratama, P. Husodo, and R. Sulaiman, "Identifikasi Citra Batik dengan Metode Convolutional Neural Network," Buana Ilmu, vol. 6, no. 1, pp. 192–208, 2021. [Online]. Available: https://doi.org/10.36805/bi.v6i1.1996.

[8] D. Aprillia, T. Rohana, T. Al Mudzakir, and D. Wahiddin, "Deteksi Nominal Mata Uang Rupiah Menggunakan Metode Convolutional Neural Network dan Feedforward Neural Network," Kajian Ilmiah Informatika dan Komputer (KLIK), vol. 4, no. 4, 2024.

[9] A. Kirana and H. Hikmayanti, "Pengenalan Pola Aksara Sunda dengan Metode Convolutional Neural Network," Jurnal Informatika, vol. 1, no. 2, 2020.

[10] I. N. Pratama, T. Rohana, T. Al Mudzakir, and P. Karawang, "Pengenalan Sampah Plastik dengan Model Convolutional Neural Network," dalam Seminar Nasional Hasil Riset Prefix-RTR, 2020.

[11] N. Hanun, M. Sarosa, and R. A. Asmara, "Pemanfaatan Algoritma Faster R-CNN ResNet-101 untuk Deteksi Potongan Tubuh Manusia," Jurnal Elektronika dan Otomasi Industri, vol. 10, no. 1, pp. 94–103, 2023. [Online]. Available: https://doi.org/10.33795/elkolind.v10i1.2754.

[12] Febriyanti, F. A. (2024). Image Processing Dengan Metode Convolutional Neural Network (Cnn) Untuk Deteksi Penyakit Kulit Pada Manusia. https://ejournal.warunayama.org/kohesi.

[13] Mahmud, "Implementasi Deep Learning dengan Menggunakan Algoritma Convolutional Neural Network untuk Mengidentifikasi Jenis Ikan Laut," 2021.

[14] Ivan, "Pooling Layer," BINUS School of Computer Science, Oct. 7, 2021. [Online]. Available: https://socs.binus.ac.id/2021/10/07/pooling-layer/. [Accessed: Apr. 28, 2025].

[15] A. Kumar, "Different Types of CNN Architectures Explained with Examples," Vitalflux, 2023. [Online]. Available: https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/. [Accessed: Apr. 28, 2025].

[16] A. Pamungkas, "Jenis-jenis Arsitektur Convolutional Neural Network (CNN) untuk Image Recognition dan Computer Vision," Pemrograman MATLAB, Jul. 23, 2023. https://pemrogramanmatlab.com/2023/07/23/jenis-jenis-arsitektur-convolutional-neural-network-cnn-untuk-image-recognition-dan-computer-vision/. [Accessed: Apr. 28, 2025].

[17] I. Maulana et al., "Deteksi Bentuk Wajah Menggunakan Convolutional Neural Network (CNN)," Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 6, 2023.

[18] E. Chodry, "Implementasi Arsitektur ResNet50 dan ResNet101 pada Sistem Kehadiran Berbasis Face Recognition," 2024.

Downloads

Published

2025-06-23

How to Cite

[1]
Al Fathir Rizal Januar, J. Indra, D. S. Kusumaningrum, and S. Faisal, “Application of Convolutional Neural Network (CNN) Algorithm with ResNet-101 Architecture for Monkey Pox Detection in Human”, JAIC, vol. 9, no. 3, pp. 1006–1012, Jun. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.