Application of Convolutional Neural Network (CNN) Algorithm with ResNet-101 Architecture for Monkey Pox Detection in Human
DOI:
https://doi.org/10.30871/jaic.v9i3.9621Keywords:
CNN, Detection, Monkey Pox, ResNet-101Abstract
Monkeypox is a zoonotic disease that has spread to various countries, including Indonesia. It is transmitted through direct contact with skin lesions, respiratory droplets, or contaminated objects. Early and accurate detection is crucial to reduce the risk of transmission and improve treatment effectiveness. This study aims to detect monkeypox using a Convolutional Neural Network (CNN) with the ResNet-101 architecture. The pre-processing steps include normalization and resizing of images to 224×224 pixels. The model is trained using the Adam optimizer, categorical crossentropy loss function, and an adaptive learning rate reduction. Evaluation results show that the model achieved an accuracy of 94%, with a precision of 0.92, recall of 0.92, and an F1-score of 0.92. The model is capable of classifying images effectively, although some misclassifications still occur. This system is intended to function as an initial image-based screening tool, but its results should be confirmed through clinical diagnosis and laboratory testing to ensure accuracy.
Downloads
References
[1] L. Hilmi Marisah, I. Laily, and Salman, "Studi dan Tatalaksana Terkait Penyakit Cacar Monyet (Monkeypox) yang Menginfeksi Manusia," Jurnal Farmasetis, vol. 11, no. 3, 2022.
[2] C. S. Kuncoro, "Monkeypox: Manifestasi dan Diagnosis," 2023.
[3] GoodStats Indonesia, "Jumlah Kasus Cacar Monyet di Indonesia," GoodStats, 2024. [Online]. Available: https://goodstats.id/article/jumlah-kasus-cacar-monyet-di-indonesia-PHI8p. [Accessed: Apr. 28, 2025].
[4] L. Budiyarto, A. A. Sabila, and H. C. Putri, "Infeksi Cacar Monyet (Monkeypox)," Jurnal Medikah Utama, 2023. [Online]. Available: http://jurnalmedikahutama.com. [Accessed: Apr. 28, 2025].
[5] Tamba, "Jumlah Kasus Cacar Monyet," Circle Archive, 2024. [Online]. Available: https://circle-archive.com/index.php/carc/article/view/290. [Accessed: Apr. 28, 2025].
[6] A. Antoni, T. Rohana, and A. R. Pratama, "Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Citra Kemasan Kardus Defect dan No Defect," Building of Informatics, Technology and Science (BITS), vol. 4, no. 4, 2023. [Online]. Available: https://doi.org/10.47065/bits.v4i4.3270.
[7] A. R. Juwita, T. Al Mudzakir, A. R. Pratama, P. Husodo, and R. Sulaiman, "Identifikasi Citra Batik dengan Metode Convolutional Neural Network," Buana Ilmu, vol. 6, no. 1, pp. 192–208, 2021. [Online]. Available: https://doi.org/10.36805/bi.v6i1.1996.
[8] D. Aprillia, T. Rohana, T. Al Mudzakir, and D. Wahiddin, "Deteksi Nominal Mata Uang Rupiah Menggunakan Metode Convolutional Neural Network dan Feedforward Neural Network," Kajian Ilmiah Informatika dan Komputer (KLIK), vol. 4, no. 4, 2024.
[9] A. Kirana and H. Hikmayanti, "Pengenalan Pola Aksara Sunda dengan Metode Convolutional Neural Network," Jurnal Informatika, vol. 1, no. 2, 2020.
[10] I. N. Pratama, T. Rohana, T. Al Mudzakir, and P. Karawang, "Pengenalan Sampah Plastik dengan Model Convolutional Neural Network," dalam Seminar Nasional Hasil Riset Prefix-RTR, 2020.
[11] N. Hanun, M. Sarosa, and R. A. Asmara, "Pemanfaatan Algoritma Faster R-CNN ResNet-101 untuk Deteksi Potongan Tubuh Manusia," Jurnal Elektronika dan Otomasi Industri, vol. 10, no. 1, pp. 94–103, 2023. [Online]. Available: https://doi.org/10.33795/elkolind.v10i1.2754.
[12] Febriyanti, F. A. (2024). Image Processing Dengan Metode Convolutional Neural Network (Cnn) Untuk Deteksi Penyakit Kulit Pada Manusia. https://ejournal.warunayama.org/kohesi.
[13] Mahmud, "Implementasi Deep Learning dengan Menggunakan Algoritma Convolutional Neural Network untuk Mengidentifikasi Jenis Ikan Laut," 2021.
[14] Ivan, "Pooling Layer," BINUS School of Computer Science, Oct. 7, 2021. [Online]. Available: https://socs.binus.ac.id/2021/10/07/pooling-layer/. [Accessed: Apr. 28, 2025].
[15] A. Kumar, "Different Types of CNN Architectures Explained with Examples," Vitalflux, 2023. [Online]. Available: https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/. [Accessed: Apr. 28, 2025].
[16] A. Pamungkas, "Jenis-jenis Arsitektur Convolutional Neural Network (CNN) untuk Image Recognition dan Computer Vision," Pemrograman MATLAB, Jul. 23, 2023. https://pemrogramanmatlab.com/2023/07/23/jenis-jenis-arsitektur-convolutional-neural-network-cnn-untuk-image-recognition-dan-computer-vision/. [Accessed: Apr. 28, 2025].
[17] I. Maulana et al., "Deteksi Bentuk Wajah Menggunakan Convolutional Neural Network (CNN)," Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 6, 2023.
[18] E. Chodry, "Implementasi Arsitektur ResNet50 dan ResNet101 pada Sistem Kehadiran Berbasis Face Recognition," 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Al Fathir Rizal Januar, Jamaludin Indra, Dwi Sulistya Kusumaningrum, Sutan Faisal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).








